Graviton Mass in the Era of Multi-Messenger Astronomy
Abstract
1. Introduction
2. Time Delay Technique in Probing Graviton Mass
3. Constraints on Graviton Mass with GW Signals
4. Gravitational Lensing of GWs for Graviton Mass Estimates
5. Graviton Mass from Dynamical Properties of Galaxy Clusters
6. Summary and Discussion of Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Planck Collaboration; et al. Planck 2018 results—VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-year wilkinson microwave anisotropy probe ( wmap ) observations: Cosmological parameter results. Astrophys. J. Suppl. Ser. 2013, 208, 19. [Google Scholar] [CrossRef]
- Anderson, L.; Aubourg, É.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 2014, 441, 24–62. [Google Scholar] [CrossRef]
- Cao, S.; Pan, Y.; Biesiada, M.; Godlowski, W.; Zhu, Z.H. Constraints on cosmological models from strong gravitational lensing systems. J. Cosmol. Astropart. Phys. 2012, 2012, 16. [Google Scholar] [CrossRef]
- Cao, S.; Biesiada, M.; Zheng, X.; Zhu, Z.H. Exploring the properties of milliarcsecond radio sources. Astrophys. J. 2015, 806, 66. [Google Scholar] [CrossRef]
- Rubin, V. One Hundred Years of Rotating Galaxies. Publ. Astron. Soc. Pac. 2000, 112, 747–750. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. [Google Scholar]
- Smith, S. The Mass of the Virgo Cluster. Astrophys. J. 1936, 83, 23–30. [Google Scholar] [CrossRef]
- Hague, P.R.; Wilkinson, M.I. Dark matter in disc galaxies—I. A Markov Chain Monte Carlo method and application to DDO 154. Mon. Not. R. Astron. Soc. 2013, 433, 2314–2333. [Google Scholar] [CrossRef][Green Version]
- Koopmans, L.V.E.; Treu, T.; Bolton, A.S.; Burles, S.; Moustakas, L.A. The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1. Astrophys. J. 2006, 649, 599–615. [Google Scholar] [CrossRef]
- Koopmans, L.V.E.; Bolton, A.; Treu, T.; Czoske, O.; Auger, M.W.; Barnabè, M.; Vegetti, S.; Gavazzi, R.; Moustakas, L.A.; Burles, S. The structure and dynamics of massive early-type galaxies: On homology, isothermality, and isotropy inside one effective radius. Astrophys. J. 2009, 703, L51–L54. [Google Scholar] [CrossRef]
- Treu, T.; Koopmans, L.V.E.; Bolton, A.S.; Burles, S.; Moustakas, L.A. Erratum: “The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early-Type Lens Galaxies” (ApJ, 640, 662 [2006]). Astrophys. J. 2006, 650, 1219. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef]
- Milgrom, M. MOND vs. dark matter in light of historical parallels. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2020, 71, 170–195. [Google Scholar] [CrossRef]
- Goldhaber, A.S.; Nieto, M.M. Photon and graviton mass limits. Rev. Mod. Phys. 2010, 82, 939–979. [Google Scholar] [CrossRef]
- de Rham, C.; Deskins, J.T.; Tolley, A.J.; Zhou, S.Y. Graviton mass bounds. Rev. Mod. Phys. 2017, 89, 025004. [Google Scholar] [CrossRef]
- de Rham, C.; Heisenberg, L.; Ribeiro, R.H. Quantum corrections in massive gravity. Phys. Rev. D 2013, 88, 084058. [Google Scholar] [CrossRef]
- Pshirkov, M.; Tuntsov, A.; Postnov, K.A. Constraints on Massive-Graviton Dark Matter from Pulsar Timing and Precision Astrometry. Phys. Rev. Lett. 2008, 101, 261101. [Google Scholar] [CrossRef]
- Loeb, A.; Weiner, N. Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Phys. Rev. Lett. 2011, 106, 171302. [Google Scholar] [CrossRef]
- Deur, A. A correlation between the amount of dark matter in elliptical galaxies and their shape. arXiv 2014, arXiv:1407.7496. [Google Scholar]
- Aoki, K.; Mukohyama, S. Massive gravitons as dark matter and gravitational waves. Phys. Rev. D 2016, 94, 024001. [Google Scholar] [CrossRef]
- Fierz, M.; Pauli, W.E. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. 1939, 173, 211–232. [Google Scholar] [CrossRef]
- de Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Zwicky, F. Cosmic and Terrestrial Tests for the Rest Mass of Gravitons. Publ. Astron. Soc. Pac. 1961, 73, 314. [Google Scholar] [CrossRef][Green Version]
- Gupta, S.; Desai, S. Bound on the graviton mass from Chandra X-ray cluster sample. Class. Quantum Gravity 2019, 36, 105001. [Google Scholar] [CrossRef]
- Desai, S. Limit on graviton mass from galaxy cluster Abell 1689. Phys. Lett. B 2018, 778, 325–331. [Google Scholar] [CrossRef]
- Gupta, S.; Desai, S. Limit on graviton mass using stacked galaxy cluster catalogs from SPT-SZ, Planck-SZ and SDSS-redMaPPer. Ann. Phys. 2018, 399, 85–92. [Google Scholar] [CrossRef]
- Rana, A.; Jain, D.; Mahajan, S.; Mukherjee, A. Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters. Phys. Lett. B 2018, 781, 220–226. [Google Scholar] [CrossRef]
- Goldhaber, A.S.; Nieto, M.M. Mass of the graviton. Phys. Rev. D 1974, 9, 1119–1121. [Google Scholar] [CrossRef]
- Will, C.M. Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D 1998, 57, 2061–2068. [Google Scholar] [CrossRef]
- Zakharov, A.F.; Jovanović, P.; Borka, D.; Jovanović, V.B. Constraining the range of Yukawa gravity interaction from S2 star orbits II: Bounds on graviton mass. J. Cosmol. Astropart. Phys. 2016, 2016, 45. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; LIGO Scientific Collaboration and Virgo Collaboration; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; LIGO Scientific Collaboration and Virgo Collaboration; et al. Tests of General Relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; LIGO Scientific Collaboration and Virgo Collaboration; et al. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D 2021, 103, 122002. [Google Scholar] [CrossRef]
- Fan, X.L.; Liao, K.; Biesiada, M.; Piórkowska-Kurpas, A.; Zhu, Z.H. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals. Phys. Rev. Lett. 2017, 118, 091102. [Google Scholar] [CrossRef]
- Collett, T.E.; Bacon, D. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing. Phys. Rev. Lett. 2017, 118, 091101. [Google Scholar] [CrossRef]
- Baker, T.; Trodden, M. Multimessenger time delays from lensed gravitational waves. Phys. Rev. D 2017, 95, 063512. [Google Scholar] [CrossRef]
- Alfaro, J. Quantum Gravity and Lorentz Invariance Violation in the Standard Model. Phys. Rev. Lett. 2005, 94, 221302. [Google Scholar] [CrossRef]
- Jacobson, T.; Liberati, S.; Mattingly, D. Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics. Phys. Rev. D 2003, 67, 124011. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef]
- Martínez, M.R.; Piran, T. Constraining Lorentz violations with gamma ray bursts. J. Cosmol. Astropart. Phys. 2006, 2006, 006. [Google Scholar] [CrossRef]
- Jacob, U.; Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature 2007, 3, 87–90. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies by MAGIC. Astrophys. J. Suppl. Ser. 2017, 232, 9. [Google Scholar] [CrossRef]
- Biesiada, M.; Piórkowska, A. Gravitational lensing time delays as a tool for testing Lorentz-invariance violation. Mon. Not. R. Astron. Soc. 2009, 396, 946–950. [Google Scholar] [CrossRef][Green Version]
- Biesiada, M.; Piórkowska, A. Lorentz invariance violation-induced time delays in GRBs in different cosmological models. Class. Quantum Gravity 2009, 26, 125007. [Google Scholar] [CrossRef]
- Biesiada, M.; Piórkowska, A. Gamma-ray burst neutrinos, Lorenz invariance violation and the influence of background cosmology. J. Cosmol. Astropart. Phys. 2007, 2007, 011. [Google Scholar] [CrossRef]
- Yunes, N.; Yagi, K.; Pretorius, F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D 2016, 94, 084002. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; LIGO Scientific Collaboration and Virgo Collaboration; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef]
- Taylor, S.R.; Gair, J.R. Cosmology with the lights off: Standard sirens in the Einstein Telescope era. Phys. Rev. D 2012, 86, 023502. [Google Scholar] [CrossRef]
- Hou, S.; Fan, X.L.; Liao, K.; Zhu, Z.H. Gravitational wave interference via gravitational lensing: Measurements of luminosity distance, lens mass, and cosmological parameters. Phys. Rev. D 2020, 101, 064011. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef]
- Abernathy, M.; Acernese, F.; Ajith, P.; Allen, B.; Amaro-Seoane, P.; Andersson, N.; Aoudia, S.; Astone, P.; Krishnan, B.; ET Collaboration; et al. Einstein Gravitational Wave Telescope: Conceptual Design Study. ET-0106A-10, Issue 4. 2011. Available online: http://www.et-gw.eu/ (accessed on 28 June 2011).
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Kawamura, S.; Nakamura, T.; Ando, M.; Seto, N.; Akutsu, T.; Funaki, I.; Ioka, K.; Kanda, N.; Kawano, I.; Musha, M.; et al. Space gravitational-wave antennas DECIGO and B-DECIGO. Int. J. Mod. Phys. D 2019, 28, 1845001. [Google Scholar] [CrossRef]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space. Phys. Rev. Lett. 2001, 87, 221103. [Google Scholar] [CrossRef]
- Sato, S.; Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Araya, A.; Funaki, I.; Ioka, K.; Kanda, N.; Moriwaki, S.; et al. The status of DECIGO. J. Phys. Conf. Ser. 2017, 840, 012010. [Google Scholar] [CrossRef]
- Yagi, K.; Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D 2011, 83, 044011. [Google Scholar] [CrossRef]
- Nakamura, T.; Ando, M.; Kinugawa, T.; Nakano, H.; Eda, K.; Sato, S.; Musha, M.; Akutsu, T.; Tanaka, T.; Seto, N.; et al. Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes. Prog. Theor. Exp. Phys. 2016, 2016, 093E01. [Google Scholar] [CrossRef]
- Isoyama, S.; Nakano, H.; Nakamura, T. Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO. Prog. Theor. Exp. Phys. 2018, 2018, 073E01. [Google Scholar] [CrossRef]
- Martynov, D.V.; Hall, E.D.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Adams, C.; Adhikari, R.X.; Anderson, R.A.; Anderson, S.B.; Arai, M.A.; et al. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D 2016, 93, 112004. [Google Scholar] [CrossRef]
- Piórkowska, A.; Biesiada, M.; Zhu, Z.H. Strong gravitational lensing of gravitational waves in Einstein Telescope. J. Cosmol. Astropart. Phys. 2013, 2013, 22. [Google Scholar] [CrossRef]
- Biesiada, M.; Ding, X.; Piórkowska, A.; Zhu, Z.H. Strong gravitational lensing of gravitational waves from double compact binaries—Perspectives for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2014, 2014, 80. [Google Scholar] [CrossRef]
- Piórkowska-Kurpas, A.; Hou, S.; Biesiada, M.; Ding, X.; Cao, S.; Fan, X.; Kawamura, S.; Zhu, Z.H. Inspiraling Double Compact Object Detection and Lensing Rate: Forecast for DECIGO and B-DECIGO. Astrophys. J. 2021, 908, 196. [Google Scholar] [CrossRef]
- Schneider, P.; Kochanek, C.; Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro. Saas-Fee Advanced Course 33; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Schneider, P.; Ehlers, J.; Falco, E. Gravitational Lenses; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Ding, X.; Biesiada, M.; Zhu, Z.H. Strongly lensed gravitational waves from intrinsically faint double compact binaries—Prediction for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2015, 2015, 006. [Google Scholar] [CrossRef]
- Lowenthal, D.D. Limits on the Photon Mass. Phys. Rev. D 1973, 8, 2349–2352. [Google Scholar] [CrossRef]
- Refsdal, S. On the Possibility of Determining Hubble’s Parameter and the Masses of Galaxies from the Gravitational Lens Effect. Mon. Not. R. Astron. Soc. 1964, 128, 307–310. [Google Scholar] [CrossRef]
- Cañameras, R.; Schuldt, S.; Suyu, S.H.; Taubenberger, S.; Meinhardt, T.; Leal-Taixé, L.; Lemon, C.; Rojas, K.; Savary, E. HOLISMOKES—II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks. Astron. Astrophys. 2020, 644, A163. [Google Scholar] [CrossRef]
- Sonnenfeld, A. Statistical strong lensing. III. Inferences with complete samples of lenses. Astron. Astrophys. 2021; accepted. [Google Scholar] [CrossRef]
- Shuo, C.; Biesiada, M.; Gavazzi, R.; Piórkowska, A.; Zhu, Z.H. Cosmology with Strong Lensing Systems. Astrophys. J. 2015, 806, 185. [Google Scholar] [CrossRef]
- Kelly, P.L.; Rodney, S.A.; Treu, T.; Foley, R.J.; Brammer, G.; Schmidt, K.B.; Zitrin, A.; Sonnenfeld, A.; Strolger, L.G.; Graur, O.; et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science 2015, 347, 1123–1126. [Google Scholar] [CrossRef]
- Liao, K.; Treu, T.; Marshall, P.; Fassnacht, C.D.; Rumbaugh, N.; Dobler, G.; Aghamousa, A.; Bonvin, V.; Courbin, F.; Hojjati, A.; et al. Strong lens time delay challenge. II. Results of TDC1. Astrophys. J. 2015, 800, 11. [Google Scholar] [CrossRef]
- Oguri, M.; Marshall, P.J. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 2010, 405, 2579–2593. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.; Stratta, G.; et al. The THESEUS space mission concept: Science case, design and expected performances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar] [CrossRef]
- Schmidt, R.W.; Allen, S.W. The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra. Mon. Not. R. Astron. Soc. 2007, 379, 209–221. [Google Scholar] [CrossRef]
- Hasler, N.; Bulbul, E.; Bonamente, M.; Carlstrom, J.E.; Culverhouse, T.L.; Gralla, M.; Greer, C.; Hawkins, D.; Hennessy, R.; Joy, M.; et al. Joint analysis of X-ray and SUNYAEV-ZEL’Dovich observations of galaxy clusters using an analytic model of the intracluster medium. Astrophys. J. 2012, 748, 113. [Google Scholar] [CrossRef]
- Ettori, S.; Donnarumma, A.; Pointecouteau, E.; Reiprich, T.H.; Giodini, S.; Lovisari, L.; Schmidt, R.W. Mass Profiles of Galaxy Clusters from X-ray Analysis. Space Sci. Rev. 2013, 177, 119–154. [Google Scholar] [CrossRef]
- Ettori, S.; Ghirardini, V.; Eckert, D.; Pointecouteau, E.; Gastaldello, F.; Sereno, M.; Gaspari, M.; Ghizzardi, S.; Roncarelli, M.; Rossetti, M. Hydrostatic mass profiles in X-COP galaxy clusters. A&A 2019, 621, A39. [Google Scholar] [CrossRef]
- Piórkowska-Kurpas, A.; Cao, S.; Biesiada, M. Graviton mass from X-COP galaxy clusters. J. High Energy Astrophys. 2022; accepted. [Google Scholar]
- Sunyaev, R.A.; Zeldovich, Y.B. The Spectrum of Primordial Radiation, its Distortions and their Significance. Comments Astrophys. Space Phys. 1970, 2, 66. [Google Scholar]
- Sunyaev, R.A.; Zeldovich, Y.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972, 4, 173. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; Planck Collaboration; et al. Planck intermediate results-V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect. A&A 2013, 550, A131. [Google Scholar] [CrossRef]
- Bonamente, M.; Joy, M.K.; LaRoque, S.J.; Carlstrom, J.E.; Reese, E.D.; Dawson, K.S. Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect andChandraX-Ray Measurements of High-Redshift Galaxy Clusters. Astrophys. J. 2006, 647, 25–54. [Google Scholar] [CrossRef]
- Eckert, D.; Ghirardini, V.; Ettori, S.; Rasia, E.; Biffi, V.; Pointecouteau, E.; Rossetti, M.; Molendi, S.; Vazza, F.; Gastaldello, F.; et al. Non-thermal pressure support in X-COP galaxy clusters. Astron. Astrophys. 2019, 621, A40. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; LIGO Scientific Collaboration and Virgo Collaboration; et al. [LIGO Scientific Collaboration and Virgo Collaboration)] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- LIGO Scientific Collaboration and Virgo Collaboration; Fermi GBM; INTEGRAL; IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-HXMT Collaboration; ANTARES Collaboration; The Swift Collaboration; AGILE Team; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Yang, L.; Ding, X.; Biesiada, M.; Liao, K.; Zhu, Z.H. How Does the Earth’s Rotation Affect Predictions of Gravitational Wave Strong Lensing Rates? Astrophys. J. 2019, 874, 139. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Hofmann, F.; Sanders, J.S.; Clerc, N.; Nandra, K.; Ridl, J.; Dennerl, K.; Ramos-Ceja, M.; Finoguenov, A.; Reiprich, T.H. eROSITA cluster cosmology forecasts: Cluster temperature substructure bias. Astron. Astrophys. 2017, 606, A118. [Google Scholar] [CrossRef]
- Nandra, K.; Athena Science Study Team. Athena: The Advanced Telescope for High-Energy Astrophysics. Mission Proposal. Available online: https://www.cosmos.esa.int/documents/400752/400864/Athena+Mission+Proposal/18b4a058-5d43-4065-b135-7fe651307c46 (accessed on 18 April 2016).
- Eckert, D.; Finoguenov, A.; Ghirardini, V.; Grandis, S.; Käfer, F.; Sanders, J.S.; Ramos-Ceja, M. Low-scatter galaxy cluster mass proxies for the eROSITA all-sky survey. arXiv 2020, arXiv:2009.03944. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piórkowska-Kurpas, A. Graviton Mass in the Era of Multi-Messenger Astronomy. Universe 2022, 8, 83. https://doi.org/10.3390/universe8020083
Piórkowska-Kurpas A. Graviton Mass in the Era of Multi-Messenger Astronomy. Universe. 2022; 8(2):83. https://doi.org/10.3390/universe8020083
Chicago/Turabian StylePiórkowska-Kurpas, Aleksandra. 2022. "Graviton Mass in the Era of Multi-Messenger Astronomy" Universe 8, no. 2: 83. https://doi.org/10.3390/universe8020083
APA StylePiórkowska-Kurpas, A. (2022). Graviton Mass in the Era of Multi-Messenger Astronomy. Universe, 8(2), 83. https://doi.org/10.3390/universe8020083