Braneworld Inspires Cosmological Implications of Barrow Holographic Dark Energy
Abstract
1. Introduction
2. Field Equation
3. Cosmological Parameters and Planes
3.1. Hubble Parameter
3.2. Equation of State Parameter
3.3. Deceleration Parameter
3.4. Squared Speed of Sound Parameter
4. Cosmological Planes
4.1. Plane
4.2. Statefinder Diagnosis
5. Generalized Second Law of Thermodynamics
6. Concluding Remarks
- We have examined the variation of Hubble parameter w.r.t redshift z in Figure 1 (Hubble horizon) and Figure 2 (event horizon). In Figure 1, we obtained the range of H lies in the interval which satisfied the recent observational data. Similarly, Figure 2 shows the range of Hubble parameter as which again very near to observational limit.
- Next, deceleration parameter is plotted with Hubble horizon (Figure 5) and event horizon (Figure 6) for BHDE model under braneworld cosmology. In Figure 5, we obtained for selected range of redshift parameter, which corresponds to accelerated phase of the universe. In any case, at early epoch, when , the trajectories are shown to be in the decelerated phase. Moreover, in Figure 6 the graph of this parameter illustrated the decelerated phase for while we obtain for which leads to accelerated phase of the universe at present and future epoch.
- We have also discussed study for BHDE model in Figure 9 and Figure 10. The trajectories of this plane in Figure 9 indicated the freezing phase as for with Hubble horizon as IR cutoff. Similarly, Figure 10 examines the behavior of the same plane for event cutoff. From Figure, it is clear that for which lead to thawing region. Therefore, cosmic expansion is more accelerating is observed for Hubble horizon.
Author Contributions
Funding
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Aldering, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Contaldi, C.R.; Hoekstra, H.; Lewis, A. Joint Cosmic Microwave Background and Weak Lensing Analysis: Constraints on Cosmological Parameters. Phys. Rev. Lett. 2003, 90, 221303. [Google Scholar] [CrossRef] [PubMed]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175. [Google Scholar] [CrossRef]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, H.; Komatsu, E.; Page, L.; et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.-J.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezić, Ž.; Knapp, G.R.; et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. Roy. Astron. Soc. 2010, 401, 2148–2168. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A.A. THE CASE FOR A POSITIVE COSMOLOGICAL Λ-TERM. Int. J. Mod. Phys. D 2000, 9, 373–443. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Bamba, K.; Myrzakulov, R.; Nojiri, S.; Odintsov, S.D. Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics. Phys. Rev. D 2012, 85, 104036. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Lee, C.C. Comment on “Einstein’s Other Gravity and the Acceleration of the Universe”. arXiv 2010, arXiv:1008.4036. [Google Scholar]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Trace-anomaly driven inflation in f(T) gravity and in minimal massive bigravity. Phys. Lett. B 2014, 731, 257–264. [Google Scholar] [CrossRef]
- Urban, F.R.; Zhitnitsky, A.R. The cosmological constant from the QCD Veneziano ghost. Phys. Lett. B 2010, 688, 9–12. [Google Scholar] [CrossRef]
- Urban, F.R.; Zhitnitsky, A.R. Cosmological constant from the ghost: A toy model. Phys. Rev. D 2009, 80, 063001. [Google Scholar] [CrossRef]
- García-Bellido, J.; Haugbølle, T. The radial BAO scale and Cosmic Shear, a new observable for Inhomogeneous Cosmologies. J. Cosmol. Astropart. Phys. 2009, 0909, 018. [Google Scholar] [CrossRef]
- Alkalaev, K.; Grigoriev, M. Unified BRST description of AdS gauge fields. Nucl. Phys. B 2010, 835, 197–220. [Google Scholar] [CrossRef]
- Ohta, N. Dark energy and QCD ghost. Phys. Lett. B 2011, 695, 41–44. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23–29. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. de Sitter brane universe induced by phantom and quantum effects. Phys. Lett. B 2003, 565, 1–9. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147–152. [Google Scholar] [CrossRef]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Armen-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef]
- Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar]
- Wei, H.; Cai, R.G. A new model of agegraphic dark energy. Phys. Lett. B 2008, 660, 113–117. [Google Scholar] [CrossRef]
- Cai, R.G. A dark energy model characterized by the age of the Universe. Phys. Lett. B 2007, 657, 228–231. [Google Scholar] [CrossRef]
- Hsu, S.D.H. Entropy Bounds and Dark Energy. Phys. Lett. B 2004, 594, 13–16. [Google Scholar] [CrossRef]
- Li, M. A Model of Holographic Dark Energy. Phys. Lett. B 2004, 603, 1–5. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other gravity and the acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1–6. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. D 2006, 73, 084007. [Google Scholar] [CrossRef]
- Dvali, G.R.; Gabadadze, G.; Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 2000, 485, 208–214. [Google Scholar] [CrossRef]
- Deffayet, C. Cosmology on a brane in Minkowski bulk. Phys. Lett. B 2001, 502, 199–208. [Google Scholar] [CrossRef]
- Deffayet, C.; Dvali, G. Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 2002, 65, 044023. [Google Scholar] [CrossRef]
- Mukherjee, A. Spherical collapse in DGP braneworld cosmology. arXiv 2020, arXiv:2008.08979. [Google Scholar]
- Koyama, K.; Maartens, R. Structure formation in the Dvali–Gabadadze–Porrati cosmological model. J. Cosmol. Astropart. Phys. 2006, 01, 016. [Google Scholar] [CrossRef]
- Multamaki, T.; Gaztanaga, E.; Manera, M. Large-scale structure in non-standard cosmologies. Mon. Not. R. Astron.Soc. 2003, 344, 761–775. [Google Scholar] [CrossRef][Green Version]
- Cardoso, A.; Koyama, K.; Seahra, S.S.; Silva, F.P. Cosmological perturbations in the DGP braneworld: Numeric solution. Phys. Rev. D 2008, 77, 083512. [Google Scholar] [CrossRef]
- Biswas, M.; Debnath, U.; Ghosh, S. Generalized ghost dark energy in DGP model. Int. J. Geo. Meth. Mod. Phys. 2019, 16, 1950178. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic inflation. Phys. Lett. B 2019, 797, 134829. [Google Scholar] [CrossRef]
- Paul, T. Holographic correspondence of F(R) gravity with/without matter fields. Europhys. Lett. 2019, 127, 20004. [Google Scholar] [CrossRef]
- Bargach, A.; Bargach, F.; Errahmani, A.; Ouali, T. Induced gravity effect on inflationary parameters in a holographic cosmology. Int. J. Mod. Phys. D 2020, 29, 2050010. [Google Scholar] [CrossRef]
- Horvat, R. Holographic bounds and Higgs inflation. Phys. Lett. B 2011, 699, 174–176. [Google Scholar] [CrossRef]
- Elizalde, E.; Timoshkin, A. Viscous fluid holographic inflation. Eur. Phys. J. C 2019, 79, 732. [Google Scholar] [CrossRef]
- Oliveros, A.; Acero, M.A. Inflation driven by a holographic energy density. Europhys. Lett. 2019, 128, 59001. [Google Scholar] [CrossRef]
- Gao, C.; Wu, F.; Chen, X.; Shen, Y.G. Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 2009, 79, 043511. [Google Scholar] [CrossRef]
- Colgáin, E.Ó.; Jabbar, M.M.S. A Critique of Holographic Dark Energy. arXiv 2021, arXiv:2102.09816. [Google Scholar]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Moradpour, H.; Moosavi, S.A.; Lobo, I.P.; Graça, J.P.M.; Jawad, A.; Salako, I.G. Thermodynamic approach to holographic dark energy and the Rényi entropy. Eur. Phys. J. C 2018, 78, 829. [Google Scholar] [CrossRef]
- Dixit, A.; Bhardwaj, V.K.; Pradhan, A. RHDE models in FRW Universe with two IR cut-offs with redshift parametrization. Eur. Phys. J. Plus 2020, 135, 831. [Google Scholar] [CrossRef]
- Sayahian-Jahromi, A.; Moosavi, S.A.; Moradpour, H.; Graça, J.P.M.; Lobo, I.P.; Salako, I.G.; Jawad, A. Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 2018, 780, 21–24. [Google Scholar] [CrossRef]
- Dubey, V.C.; Sharma, U.K.; Pradhan, A. Sharma–Mittal holographic dark energy model in conharmonically flat space-time. Int. J. Geom. Methos. Mod. Phys. 2021, 18, 2150002. [Google Scholar] [CrossRef]
- Saridakis, E.N. Barrow holographic dark energy. Phys. Rev. D 2020, 102, 123525. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152–166. [Google Scholar] [CrossRef]
- Bakenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A new metric invariant of transitive dynamical systems and of automorphisms of Lebesgue spaces. Dokl. Acad. Sci. USSR 1958, 119, 861–864. [Google Scholar]
- Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.D.; Mittal, D.P. New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 1975, 10, 28–40. [Google Scholar]
- Masi, M. A step beyond Tsallis and Renyi entropie. Phys. Lett. A 2005, 383, 217–224. [Google Scholar] [CrossRef]
- Lesche, B. Instabilities of Rényi entropies. J. Stat. Phys. 1982, 27, 419–422. [Google Scholar] [CrossRef]
- Barrow, J.D. The area of a rough black hole. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef]
- Wang, B.; Gong, Y.; Abdalla, E. Thermodynamics of an accelerated expanding universe. Phys. Rev. D 2006, 74, 083520. [Google Scholar] [CrossRef]
- Sadjadi, M.H.; Honardoost, M. Thermodynamics second law and ω = −1 crossing(s) in interacting holographic dark energy model. Phys. Lett. B 2007, 647, 231–236. [Google Scholar] [CrossRef]
- Arevalo, F.; Cifuentes, P.; PeÑa, F. Generalized Second Law of Thermodynamics forHolographic Dark Energy and cosmologicalinteraction. Astrophys. Space Sci. 2016, 361, 45. [Google Scholar] [CrossRef]
- Dixit, A.; Bharadwaj, V.K.; Pradhan, A. Barrow HDE model for Statefinder diagnostic in non-flat FRW universe. arXiv 2021, arXiv:2103.08339. [Google Scholar]
- Sharma, U.K.; Varshney, G.; Dubey, V.C. Barrow agegraphic dark energy. Int. J. Mod. Phys. D 2021, 30, 2150021. [Google Scholar] [CrossRef]
- Srivastava, S.; Sharma, U.K. Barrow holographic dark energy with hubble horizon as IR cutoff. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150014. [Google Scholar] [CrossRef]
- Mamon, A.A.; Paliathanasis, A.; Saha, S. Dynamics of an Interacting Barrow Holographic Dark Energy Model and its Thermodynamic Implications. Eur. Phys J. Plus 2021, 136, 134. [Google Scholar] [CrossRef]
- Bolotin, Y.L.; Kostenko, A.; Lemets, O.A.; Yerokhin, D.A. Cosmological evolution with interaction between dark energy and dark matter. Int. J. Geom. Methos. Mod. Phys. 2015, 24, 1530007. [Google Scholar] [CrossRef]
- Sadri, E.; Khurshudyan, M.; Zeng, D.F. Scrutinizing Various Phenomenological Interactions In The Context Of Holographic Ricci Dark Energy Models. arXiv 2019, arXiv:1904.11600. [Google Scholar] [CrossRef]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2020, arXiv:1807.0620. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Caldwell, R.R.; Linder, E.V. The Limits of Quintessence. Phys. Rev. Lett. 2005, 95, 141301. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. Statefinder—A new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 2003, 77, 201. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, T. Classical and Quantum Thermodynamics of horizons in spherically symmetric spacetimes. Class. Quantum Grav. 2002, 19, 5387–5408. [Google Scholar] [CrossRef]
- Cai, R.G.; Kim, S.P. First Law of Thermodynamics and Friedmann Equations of Friedmann-Robertson-Walker Universe. J. High Energy Phys. 2005, 02, 050. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Equivalence of the modified gravity equation to the Clausius relation. Europhys. Lett. 2010, 89, 50003. [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.G. Friedmann Equations of FRW Universe in Scalar-tensor Gravity, f(R) Gravity and First Law of Thermodynamics. Phys. Lett. B 2006, 635, 7–10. [Google Scholar] [CrossRef]
- Lancoz, C. A Remarkable property of the Riemann-Christoffel tensor in four dimensions. Ann. Math. 1938, 39, 842–850. [Google Scholar]
- Capozziello, S.; Ruchika; Sen, A.A. Model independent constraints on dark energy evolution from low-redshift observations. Mon. Not. Roy. Astron. Soc. 2019, 484, 4484–4494. [Google Scholar] [CrossRef]
Decelerated Phase | Stiff Fluid Radiation-Dominated Dust Matter-Dominated | |
Accelerated Phase | Quintessence Cosmological Constant Phantom-Dominated Era |
Model | r | s |
---|---|---|
CDM | 1 | 0 |
CDM limit | 1 | 1 |
Phantom and Quintessence | <1 | >0 |
Chaplygin Gas | >1 | <0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, S.; Azhar, N. Braneworld Inspires Cosmological Implications of Barrow Holographic Dark Energy. Universe 2021, 7, 268. https://doi.org/10.3390/universe7080268
Rani S, Azhar N. Braneworld Inspires Cosmological Implications of Barrow Holographic Dark Energy. Universe. 2021; 7(8):268. https://doi.org/10.3390/universe7080268
Chicago/Turabian StyleRani, Shamaila, and Nadeem Azhar. 2021. "Braneworld Inspires Cosmological Implications of Barrow Holographic Dark Energy" Universe 7, no. 8: 268. https://doi.org/10.3390/universe7080268
APA StyleRani, S., & Azhar, N. (2021). Braneworld Inspires Cosmological Implications of Barrow Holographic Dark Energy. Universe, 7(8), 268. https://doi.org/10.3390/universe7080268