Varying Newton Constant and Black Hole to White Hole Quantum Tunneling
Abstract
1. Introduction
2. Modified First Law of Black Hole Thermodynamics
3. Adiabatic Change of and Adiabatic Invariant
4. A and K as Canonically Conjugate Variables and Black-Hole—White-Hole Quantum Tunneling
5. White Hole Entropy and Temperature
6. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cimento 1974, 11, 467. [Google Scholar]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 9, 99. [Google Scholar] [CrossRef]
- Barrow, J.D. Finite action principle revisited. Phys. Rev. D 2020, 101, 023527. [Google Scholar] [CrossRef]
- Landau, L.D. Niels Bohr and the Development of Physics; Pauli, W., Rosenfeld, L., Weisskopf, V., Eds.; McGraw-Hill: New York, NY, USA, 1955; p. 52. [Google Scholar]
- Akama, K. Pregeometry. In Gauge Theory and Gravitation; Nakanishi, N., Nariai, H., Eds.; Springer: Berlin, Germany, 1983; pp. 267–271. [Google Scholar]
- Akama, K.; Chikashige, Y.; Matsuki, T.; Terazawa, H. Gravity and electromagnetism as collective phenomena: A derivation of Einstein’s general relativity. Prog. Theor. Phys 1978, 60, 868. [Google Scholar] [CrossRef][Green Version]
- Terazawa, H. High energy physics in the 21st century. In Proceedings of the 2nd International Workshop on the Fundamental Problems of High Energy Physics and Field Theory, Protvino, Moscow Region, Russian Federation, 23–25 June 1999. KEK Preprint 99-46, July 1999. [Google Scholar]
- Terazawa, H.; Chikashige, Y.; Akama, K.; Matsuki, T. Simple relation between the fine-structure and gravitational constants. Phys. Rev. D 1977, 15, 1181–1183. [Google Scholar] [CrossRef]
- Terazawa, H. Cosmological origin of mass scales. Phys. Lett. B 1981, 101, 43. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Merging gauge coupling constants without Grand Unification. J. Experiment. Theor. Phys. Lett. 2005, 81, 551–555. [Google Scholar] [CrossRef][Green Version]
- Volovik, G.E. The Universe in a Helium Droplet; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Pronin, P.; Kulikov, I. Local quantum statistics in arbitrary curved space-time. Pramana 1987, 28, 355–359. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. f(R) cosmology from q–theory. JETP Lett. 2008, 88, 289–294. [Google Scholar] [CrossRef]
- Gibbons, G.; Kallosh, R.; Kol, B. Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 1996, 77, 4992. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Strominger, A. Counting states of near extremal black holes. Phys. Rev. Lett. 1996, 77, 2368. [Google Scholar] [CrossRef] [PubMed]
- Barvinsky, A.; Das, S.; Kunstatter, G. Quantum mechanics of charged black holes. Phys. Lett. B 2001, 517, 415–420. [Google Scholar] [CrossRef]
- Barvinsky, A.; Das, S.; Kunstatter, G. Discrete spectra of charged black holes. Foundat. Phys. 2002, 32, 1851–1862. [Google Scholar] [CrossRef]
- Ansorg, M.; Hennig, J. The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 2008, 25, 22. [Google Scholar] [CrossRef]
- Visser, M. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole. J. High Energy Phys. 2012, 2012, 23. [Google Scholar] [CrossRef]
- Tharanath, R.; Kuriakose, V.C. Thermodynamics and spectroscopy of Schwarzschild black hole surrounded by Quintessence. Mod. Phys. Lett. A 2013, 28, 1350003. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum black holes as atoms. In Proceedings of the Eight Marcel Grossmann Meeting, Jerusalem, Israel, 22–27 June 1997; Piran, T., Ruffini, R., Eds.; World Scientific: Singapore, 1999; pp. 92–111. [Google Scholar]
- Corda, C. Time dependent Schrödinger equation for black hole evaporation: No information loss. Ann. Phys. 2015, 353, 71–72. [Google Scholar] [CrossRef]
- Carlip, S. Black hole thermodynamics. Int. J. Mod. Phys. D 2014, 23, 1430023. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Dark matter from dark energy in q-theory. JETP Lett. 2017, 105, 74–77. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Santillan, O.; Volovik, G.E.; Zhou, A. Vacuum energy decay from a q-bubble. Physics 2019, 1, 321–338. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef] [PubMed]
- Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Singleton, Hawking temperature in the tunneling picture. Phys. Lett. B 2006, 642, 124–128. [Google Scholar]
- Volovik, G.E. Particle decay in de Sitter spacetime via quantum tunneling. JETP Lett. 2009, 90, 1–4. [Google Scholar] [CrossRef]
- Vanzo, L.; Acquaviva, G.; Di Criscienzo, R. Tunnelling methods and Hawking’s radiation: Achievements and prospects. Class. Quantum Grav. 2011, 28, 183001. [Google Scholar] [CrossRef]
- Volovik, G.E. Simulation of Painleve-Gullstrand black hole in thin 3He-A film. JETP Lett. 1999, 69, 705–713. [Google Scholar] [CrossRef]
- Majhi, B.R.; Vagenas, E.C. Black hole spectroscopy via adiabatic invariance. Phys. Lett. B 2011, 701, 623–625. [Google Scholar] [CrossRef]
- Barcelo, C.; Carballo-Rubio, R.; Garay, L.J. Mutiny at the white-hole district. Int. J. Mod. Phys. D 2014, 23, 1442022. [Google Scholar] [CrossRef]
- Barcelo, C.; Carballo-Rubio, R.; Garay, L.J. Exponential fading to white of black holes in quantum gravity. Class. Quantum Grav. 2017, 34, 105007. [Google Scholar] [CrossRef]
- Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White holes as remnants: A surprising scenario for the end of a black hole. Class. Quantum Grav. 2018, 35, 225003. [Google Scholar] [CrossRef]
- Martin-Dussaud, P.; Rovelli, C. Evaporating black-to-white hole. Class. Quantum Grav. 2019, 36, 245002. [Google Scholar] [CrossRef]
- Rovelli, C. Viewpoint: Black hole evolution traced out with loop quantum gravity. Physics 2018, 11, 127. [Google Scholar] [CrossRef]
- Achour, J.B.; Uzan, J.P. Effective theory of a pulsating Planck star. arXiv 2020, arXiv:2001.06153. [Google Scholar]
- Achour, J.B.; Brahma, S.; Uzan, J.P. Bouncing compact objects. Part I. Quantum extension of the Oppenheimer-Snyder collapse. J. Cosmol. Astropart. Phys. 2020, 03, 041. [Google Scholar] [CrossRef]
- Achour, J.B.; Brahma, S.; Mukohyama, S.; Uzan, J.P. Consistent black-to-white hole bounces from matter collapse. arXiv 2020, arXiv:2004.1297. [Google Scholar]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Mass and horizon Dirac observables in effective models of quantum black-to-white hole transition. arXiv 2019, arXiv:1912.00774. [Google Scholar]
- Lifshitz, I.M.; Kagan, Y. Quantum kinetics of phase transitions at temperatures close to absolute zero. JETP 1972, 35, 206–214. [Google Scholar]
- Iordanskii, S.V.; Finkel’shtein, A.M. Effect of quantum fluctuations on the lifetimes of metastable states in solids. JETP 1972, 35, 215. [Google Scholar]
- Volovik, G.E. Quantum mechanical creation of vortices in superfluids. JETP Lett. 1972, 15, 81. [Google Scholar]
- Blatter, G.; Feigel’man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994, 66, 1125–1388. [Google Scholar] [CrossRef]
- Keski-Vakkuri, E.; Kraus, P. Microcanonical D-branes and back reaction. Nucl. Phys. B 1997, 491, 249–262. [Google Scholar] [CrossRef]
- Berezin, V.A.; Boyarsky, A.M.; Neronov, A.Y. On the mechanism of Hawking radiation. Gravit. & Cosmol. 1999, 5, 16–22. [Google Scholar]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 1921, 173, 677. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie. Arkiv. Mat. Astron. Fys. 1992, 16, 8. [Google Scholar]
- Unruh, W. Experimental black hole evaporation. Phys. Rev. Lett. 1981, 46, 1351–1353. [Google Scholar] [CrossRef]
- Volovik, G.E. Black hole and Hawking radiation by type-II Weyl fermions. JETP Lett. 2016, 104, 645–648. [Google Scholar] [CrossRef]
- Volovik, G.E.; Zhang, K. Lifshitz transitions, type-II Dirac and Weyl fermions, event horizon and all that. J. Low Temp. Phys. 2017, 189, 276–299. [Google Scholar] [CrossRef]
- Kedem, Y.; Bergholtz, E.J.; Wilczek, F. Black and white holes at material junctions. arXiv 2020, arXiv:2001.02625. [Google Scholar]
- Nissinen, J.; Volovik, G.E. Type-III and IV interacting Weyl points. JETP Lett. 2017, 105, 447–452. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. In Statistical Physics; Pergamon Press: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Hakonen, P.J.; Vuorinen, R.T. Nuclear ferromagnetic ordering in silver at negative nanokelvin temperatures. J. Low Temp. Phys. 1992, 89, 177–186. [Google Scholar] [CrossRef]
- Volovik, G.E. Negative temperature for negative lapse function. JETP Lett. 2019, 109, 8–11. [Google Scholar] [CrossRef]
- Volovik, G.E. Comment to the CPT-symmetric Universe: Two possible extensions. JETP Lett. 2019, 109, 682–683. [Google Scholar] [CrossRef]
- Christodoulou, M.; Riello, A.; Rovelli, C. How to detect anti-spacetime. Int. J. Mod. Phys. D 2012, 21, 1242014. [Google Scholar] [CrossRef]
- Boyle, L.; Finn, K.; Turok, N. CPT-symmetric Universe. Phys. Rev. Lett. 2018, 121, 251301. [Google Scholar] [CrossRef] [PubMed]
- Boyle, L.; Finn, K.; Turok, N. The Big Bang, CPT, and neutrino dark matter. arXiv 2018, arXiv:1803.08930. [Google Scholar]
- Cvetic, M.; Gibbons, G.W.; Lü, H.; Pope, C.N. Killing horizons: Negative temperatures and entropy super-additivity. Phys. Rev. D 2018, 98, 106015. [Google Scholar] [CrossRef]
- Jacobson, T. Black hole entropy and induced gravity. arXiv 1994, arXiv:gr-qc/9404039. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volovik, G. Varying Newton Constant and Black Hole to White Hole Quantum Tunneling. Universe 2020, 6, 133. https://doi.org/10.3390/universe6090133
Volovik G. Varying Newton Constant and Black Hole to White Hole Quantum Tunneling. Universe. 2020; 6(9):133. https://doi.org/10.3390/universe6090133
Chicago/Turabian StyleVolovik, Grigory. 2020. "Varying Newton Constant and Black Hole to White Hole Quantum Tunneling" Universe 6, no. 9: 133. https://doi.org/10.3390/universe6090133
APA StyleVolovik, G. (2020). Varying Newton Constant and Black Hole to White Hole Quantum Tunneling. Universe, 6(9), 133. https://doi.org/10.3390/universe6090133