Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review
Abstract
1. Introduction
2. Theoretical Framework
3. Description of the Experimental Setups
3.1. DUNE Setup
3.2. T2HK Setup
3.3. ESSSB Setup
4. Details of the Statistical Analysis
5. Mass Hierarchy Discovery Potential in the 3 + 1 Scheme
6. CP-violation Discovery Potential
7. Reconstruction of the CP Phases
8. Sterile Neutrinos and the Octant of
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Conversion Probability in Matter
References
- Fukuda, Y.; et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; et al. [SNO Collaboration] Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Q.R.; et al. [SNO Collaboration] Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys. Rev. Lett. 2002, 89, 011302. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Q.R.; et al. [SNO Collaboration] Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; et al. [KamLAND Collaboration] First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef] [PubMed]
- Abazajian, K.N.; Acero, M.A.; Agarwalla, S.K.; Aguilar-Arevalo, A.A.; Albright, C.H.; Antusch, S.; Arguelles, C.A.; Balantekin, A.B.; Barenboim, G.; Barger, V.; et al. Light Sterile Neutrinos: A White Paper. arXiv 2012, arXiv:1204.5379. Available online: https://arxiv.org/abs/1204.5379 (accessed on 6 March 2020).
- Palazzo, A. Phenomenology of light sterile neutrinos: A brief review. Mod. Phys. Lett. A 2013, 28, 1330004. [Google Scholar] [CrossRef]
- Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F.; Zavanin, E.M. Light sterile neutrinos. J. Phys. G 2016, 43, 033001. [Google Scholar] [CrossRef]
- Giunti, C. Light Sterile Neutrinos: Status and Perspectives. Nucl. Phys. B 2016, 908, 336–353. [Google Scholar] [CrossRef]
- Giunti, C.; Lasserre, T. eV-scale Sterile Neutrinos. Ann. Rev. Nucl. Part. Sci. 2019, 69, 163–190. [Google Scholar] [CrossRef]
- Böser, S.; Buck, C.; Giunti, C.; Lesgourgues, J.; Ludhova, L.; Mertens, S.; Schukraft, A.; Wurm, M. Status of Light Sterile Neutrino Searches. Prog. Part. Nucl. Phys. 2019, 111, 103736. [Google Scholar] [CrossRef]
- Capozzi, F.; Giunti, C.; Laveder, M.; Palazzo, A. Joint short- and long-baseline constraints on light sterile neutrinos. Phys. Rev. D 2017, 95, 033006. [Google Scholar] [CrossRef]
- Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F. Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations. J. High Energy Phys. 2017, 2017, 135. [Google Scholar] [CrossRef]
- Dentler, M.; Hernandez-Cabezudo, A.; Kopp, J.; Machado, P.A.N.; Maltoni, M.; Martinez-Soler, I.; Schwetz, T. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos. J. High Energy Phys. 2018, 2018, 10. [Google Scholar] [CrossRef]
- Diaz, A.; Arguelles, C.A.; Collin, G.H.; Conrad, J.M.; Shaevitz, M.H. Where Are We With Light Sterile Neutrinos? arXiv 2019, arXiv:1906.00045. Available online: https://arxiv.org/abs/1906.00045 (accessed on 6 March 2020).
- Aguilar-Arevalo, A.; et al. [LSND Collaboration] Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; et al. [MiniBooNE Collaboration] Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett. 2018, 121, 221801. [Google Scholar] [CrossRef]
- Mention, G.; Fechner, M.; Lasserre, T.; Mueller, T.; Lhuillier, D.; Cribier, M.; Letourneau, A. The Reactor Antineutrino Anomaly. Phys. Rev. D 2011, 83, 073006. [Google Scholar] [CrossRef]
- Hampel, W.; et al. [GALLEX Collaboration] Final results of the Cr-51 neutrino source experiments in GALLEX. Phys. Lett. B 1998, 420, 114–126. [Google Scholar] [CrossRef]
- Abdurashitov, J.N.; Gavrin, V.N.; Girin, S.V.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov, N.G.; Knodel, T.V.; Matveev, V.A. Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source. Phys. Rev. C 2006, 73, 045805. [Google Scholar] [CrossRef]
- Adamson, P.; et al. [MINOS Collaboration] Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS. Phys. Rev. Lett. 2016, 117, 151803. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.; et al. [MINOS+ Collaboration] Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit. Phys. Rev. Lett. 2019, 122, 091803. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.; et al. [The NOvA Collaboration] Search for active-sterile neutrino mixing using neutral-current interactions in NOvA. Phys. Rev. D 2017, 96, 072006. [Google Scholar] [CrossRef]
- Abe, K.; et al. [T2K Collaboration] Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km. Phys. Rev. D 2019, 99, 071103. [Google Scholar] [CrossRef]
- An, F.P.; et al. [Daya Bay Collaboration] Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. Phys. Rev. Lett. 2016, 117, 151802. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.; et al. [Daya Bay Collaboration, MINOS Collaboration] Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments. Phys. Rev. Lett. 2016, 117, 151801, [Addendum: Phys. Rev. Lett. 2016, 117, 209901]. [Google Scholar] [CrossRef] [PubMed]
- Danilov, M. Recent results of the DANSS experiment. In Proceedings of the 2019 European Physical Society Conference on High Energy Physics (EPS-HEP2019), Ghent, Belgium, 10–17 July 2019. [Google Scholar]
- Ko, Y.J.; et al. [NEOS Collaboration] Sterile Neutrino Search at the NEOS Experiment. Phys. Rev. Lett. 2017, 118, 121802. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Ivochkin, V.G.; Samoilov, R.M.; Fomin, A.K.; Polyushkin, A.O.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Chernyj, A.V.; Zherebtsov, O.M.; et al. First Observation of the Oscillation Effect in the Neutrino-4 Experiment on the Search for the Sterile Neutrino. JETP Lett. 2019, 109, 209–218. [Google Scholar] [CrossRef]
- Ashenfelter, J.; et al. [PROSPECT Collaboration] First search for short-baseline neutrino oscillations at HFIR with PROSPECT. Phys. Rev. Lett. 2018, 121, 251802. [Google Scholar] [CrossRef]
- Almazán Molina, H.; Bernard, L.; Blanchet, A.; Bonhomme, A.; Buck, C.; Amo Sánchez, P.; Atmani, I.E.; Haser, H.; Kandzia, F.; Kox, S.; et al. Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data. arXiv 2019, arXiv:1912.06582. Available online: https://cel.archives-ouvertes.fr/LPSC/hal-02423748v1 (accessed on 6 March 2020).
- Abe, K.; et al. [Super-Kamiokande Collaboration] Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande. Phys. Rev. D 2015, 91, 052019. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Searches for Sterile Neutrinos with the IceCube Detector. Phys. Rev. Lett. 2016, 117, 071801. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.G.; et al. [IceCube Collaboration] Search for sterile neutrino mixing using three years of IceCube DeepCore data. Phys. Rev. D 2017, 95, 112002. [Google Scholar] [CrossRef]
- Albert, A.; et al. [The ANTARES collaboration] Measuring the atmospheric neutrino oscillation parameters and constraining the 3 + 1 neutrino model with ten years of ANTARES data. J. High Energy Phys. 2019, 2019, 113. [Google Scholar] [CrossRef]
- Palazzo, A. Testing the very-short-baseline neutrino anomalies at the solar sector. Phys. Rev. D 2011, 83, 113013. [Google Scholar] [CrossRef]
- Palazzo, A. An estimate of θ14 independent of the reactor antineutrino flux determinations. Phys. Rev. D 2012, 85, 077301. [Google Scholar] [CrossRef]
- Giunti, C.; Li, Y.F. Matter Effects in Active-Sterile Solar Neutrino Oscillations. Phys. Rev. D 2009, 80, 113007. [Google Scholar] [CrossRef]
- Lasserre, T. Light Sterile Neutrinos in Particle Physics: Experimental Status. Phys. Dark Univ. 2014, 4, 81–85. [Google Scholar] [CrossRef]
- Nunokawa, H.; Peres, O.L.G.; Zukanovich Funchal, R. Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope. Phys. Lett. B 2003, 562, 279–290. [Google Scholar] [CrossRef]
- Klop, N.; Palazzo, A. Imprints of CP violation induced by sterile neutrinos in T2K data. Phys. Rev. D 2015, 91, 073017. [Google Scholar] [CrossRef]
- Hollander, D.; Mocioiu, I. Minimal 3 + 2 sterile neutrino model at LBNE. Phys. Rev. D 2015, 91, 013002. [Google Scholar] [CrossRef]
- Berryman, J.M.; de Gouvêa, A.; Kelly, K.J.; Kobach, A. Sterile neutrino at the Deep Underground Neutrino Experiment. Phys. Rev. D 2015, 92, 073012. [Google Scholar] [CrossRef]
- Gandhi, R.; Kayser, B.; Masud, M.; Prakash, S. The impact of sterile neutrinos on CP measurements at long baselines. J. High Energy Phys. 2015, 2015, 39. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Physics Reach of DUNE with a Light Sterile Neutrino. J. High Energy Phys. 2016, 2016, 16. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Octant of θ23 in danger with a light sterile neutrino. Phys. Rev. Lett. 2017, 118, 031804. [Google Scholar] [CrossRef] [PubMed]
- Coloma, P.; Forero, D.V.; Parke, S.J. DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos. J. High Energy Phys. 2018, 2018, 79. [Google Scholar] [CrossRef]
- Choubey, S.; Dutta, D.; Pramanik, D. Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK. Phys. Rev. D 2017, 96, 056026. [Google Scholar] [CrossRef]
- Choubey, S.; Dutta, D.; Pramanik, D. Measuring the Sterile Neutrino CP Phase at DUNE and T2HK. Eur. Phys. J. A 2017, 78, 339. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Signatures of a Light Sterile Neutrino in T2HK. J. High Energy Phys. 2018, 2018, 91. [Google Scholar] [CrossRef]
- Haba, N.; Mimura, Y.; Yamada, T. On θ23 Octant Measurement in 3 + 1 Neutrino Oscillations in T2HKK. arXiv 2018, arXiv:1812.10940. Available online: https://arxiv.org/abs/1812.10940 (accessed on 6 March 2020).
- Donini, A.; Meloni, D. The 2 + 2 and 3 + 1 four family neutrino mixing at the neutrino factory. Eur. Phys. J. C 2001, 22, 179–186. [Google Scholar] [CrossRef][Green Version]
- Donini, A.; Lusignoli, M.; Meloni, D. Telling three neutrinos from four neutrinos at the neutrino factory. Nucl. Phys. B 2002, 624, 405–422. [Google Scholar] [CrossRef][Green Version]
- Donini, A.; Maltoni, M.; Meloni, D.; Migliozzi, P.; Terranova, F. 3 + 1 sterile neutrinos at the CNGS. J. High Energy Phys. 2007, 2007, 13. [Google Scholar] [CrossRef]
- Dighe, A.; Ray, S. Signatures of heavy sterile neutrinos at long baseline experiments. Phys. Rev. D 2007, 76, 113001. [Google Scholar] [CrossRef]
- Donini, A.; Fuki, K.I.; Lopez-Pavon, J.; Meloni, D.; Yasuda, O. The Discovery channel at the Neutrino Factory: Numu to nutau pointing to sterile neutrinos. J. High Energy Phys. 2009, 2009, 41. [Google Scholar] [CrossRef][Green Version]
- Yasuda, O. Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory. Physics beyond the standard models of particles, cosmology and astrophysics. In Proceedings of the 5th International Conference, Beyond 2010, Cape Town, South Africa, 1–6 February 2010; pp. 300–313. [Google Scholar]
- Meloni, D.; Tang, J.; Winter, W. Sterile neutrinos beyond LSND at the Neutrino Factory. Phys. Rev. D 2010, 82, 093008. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Thalapillil, A.M.; Wagner, C.E.M. Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ13. Phys. Rev. D 2012, 85, 073004. [Google Scholar] [CrossRef]
- Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T. The minimal 3 + 2 neutrino model versus oscillation anomalies. J. High Energy Phys. 2012, 2012, 161. [Google Scholar] [CrossRef]
- Gandhi, R.; Kayser, B.; Prakash, S.; Roy, S. What measurements of neutrino neutral current events can reveal. J. High Energy Phys. 2017, 2017, 202. [Google Scholar] [CrossRef]
- Kim, C.S.; López Castro, G.; Sahoo, D. Constraints on a sub-eV scale sterile neutrino from nonoscillation measurements. Phys. Rev. D 2018, 98, 115021. [Google Scholar] [CrossRef]
- Giunti, C.; Li, Y.F.; Zhang, Y.Y. KATRIN bound on 3 + 1 active-sterile neutrino mixing and the reactor antineutrino anomaly. arXiv 2019, arXiv:1912.12956. Available online: https://arxiv.org/abs/1912.12956 (accessed on 6 March 2020).
- Goswami, S.; Rodejohann, W. Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium beta decay and cosmology. Phys. Rev. D 2006, 73, 113003. [Google Scholar] [CrossRef]
- Girardi, I.; Meroni, A.; Petcov, S.T. Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos. J. High Energy Phys. 2013, 2013, 146. [Google Scholar] [CrossRef]
- De Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 2018, 782, 633–640. [Google Scholar] [CrossRef]
- Capozzi, F.; Lisi, E.; Marrone, A.; Palazzo, A. Current unknowns in the three neutrino framework. Prog. Part. Nucl. Phys. 2018, 102, 48–72. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23,δCP, and the mass ordering. J. High Energy Phys. 2019, 2019, 106. [Google Scholar] [CrossRef]
- Acciarri, R.; et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:1601.054712016. Available online: https://cds.cern.ch/record/2126238 (accessed on 6 March 2020).
- Acciarri, R.; et al. [DUNE collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv 2015, arXiv:1512.06148. Available online: http://xxx.lanl.gov/abs/1512.06148 (accessed on 6 March 2020).
- Strait, J.; McCluskey, E.; Lundin, T.; Willhite, J.; Hamernik, T.; Papadimitriou, V.; Marchionni, A.; Kim, M.J.; Nessi, M.; Montanari, D.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015. arXiv 2016, arXiv:1601.05823. Available online: https://arxiv.org/abs/1601.05823 (accessed on 6 March 2020).
- Acciarri, R.; et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv 2016, arXiv:1601.02984. Available online: https://arxiv.org/abs/1601.02984 (accessed on 6 March 2020).
- Adams, C.; et al. [LBNE Collaboration] Scientific Opportunities with the Long-Baseline Neutrino Experiment; Fermi National Accelerator Lab. (FNAL): Batavia, IL, USA, 2013. [Google Scholar]
- Agarwalla, S.K.; Li, T.; Rubbia, A. An Incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline Superbeam for large θ13. J. High Energy Phys. 2012, 2012, 154. [Google Scholar] [CrossRef]
- Bishai, M. (Brookhaven National Laboratory, Upton, NY 11973, USA). Personal communication, 2012.
- Abe, K.; Abe, T.; Aihara, H.; Fukuda, Y.; Hayato, Y.; Huang, K.; Ichikawa, A.K.; Ikeda, M.; Inoue, K.; Ishino, H.; et al. Letter of Intent: The Hyper-Kamiokande Experiment—Detector Design and Physics Potential. arXiv 2011, arXiv:1109.3262. Available online: https://arxiv.org/abs/1109.3262 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande Working Group] A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande. arXiv 2014, arXiv:1412.4673. Available online: https://arxiv.org/abs/1412.4673 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande Proto-Collaboration] Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Prog. Theor. Exp. Phys. 2015, 2015, 053C02. [Google Scholar]
- Para, A.; Szleper, M. Neutrino oscillations experiments using off-axis NuMI beam. arXiv 2001, arXiv:hep-ex/0110032. Available online: https://arxiv.org/abs/hep-ex/0110032 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande proto-Collaboration] Physics potentials with the second Hyper-Kamiokande detector in Korea. Prog. Theor. Exp. Phys. 2018, 2018, 063C01. [Google Scholar]
- Baussan, E.; Blennow, B.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; et al. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac. Nucl. Phys. B 2014, 885, 127–149. [Google Scholar] [CrossRef]
- Dracos, M. The ESSνSB Project for Leptonic CP Violation Discovery based on the European Spallation Source Linac. Nucl. Part. Phys. Proc. 2016, 273, 1726–1731. [Google Scholar] [CrossRef]
- Dracos, M. The European Spallation Source neutrino Super Beam. In Proceedings of the Prospects in Neutrino Physics (NuPhys2017), London, UK, 20–22 December 2017; pp. 33–41. [Google Scholar]
- Dracos, M.; Ekelof, T. Neutrino CP Violation with the ESS neutrino Super Beam (ESSνSB). PoS 2019, 12, 524. [Google Scholar]
- Martinez, E.F. (IFT, Madrid, Spain). Personal communication, 2013.
- Agostino, L.; Buizza-Avanzini, M.; Dracos, M.; Duchesneau, D.; Marafini, M.; Mezzetto, M.; Mosca, L.; Patzak, T.; Tonazzo, A.; Vassilopoulos, N. Study of the performance of a large scale water-Cherenkov detector (MEMPHYS). J. Cosmol. Astropart. Phys. 2013, 2013, 24. [Google Scholar] [CrossRef][Green Version]
- Agostino, L. (LPNHE Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris 75252, France). Personal communication, 2013.
- Agarwalla, S.K.; Choubey, S.; Prakash, S. Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS. J. High Energy Phys. 2014, 2014, 20. [Google Scholar] [CrossRef]
- Kumar Agarwalla, S.; Chatterjee, S.S.; Palazzo, A. Physics Potential of ESSνSB in the presence of a Light Sterile Neutrino. J. High Energy Phys. 2019, 2019, 174. [Google Scholar] [CrossRef]
- Huber, P.; Lindner, M.; Winter, W. Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 2005, 167, 195. [Google Scholar] [CrossRef]
- Huber, P.; Kopp, J.; Lindner, M.; Rolinec, M.; Winter, W. New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator. Comput. Phys. Commun. 2007, 177, 432–438. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Huber, P.; Lindner, M.; Winter, W. Superbeams versus neutrino factories. Nucl. Phys. B 2002, 645, 3–48. [Google Scholar] [CrossRef]
- Fogli, G.L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A. Getting the most from the statistical analysis of solar neutrino oscillations. Phys. Rev. D 2002, 66, 053010. [Google Scholar] [CrossRef]
- Blennow, M.; Coloma, P.; Huber, P.; Schwetz, T. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. J. High Energy Phys. 2014, 2014, 28. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Dasgupta, A.; Palazzo, A. Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino. J. High Energy Phys. 2016, 2016, 111. [Google Scholar] [CrossRef][Green Version]
- Mohapatra, R.; Smirnov, A. Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef]
- Albright, C.H.; Chen, M.C. Model Predictions for Neutrino Oscillation Parameters. Phys. Rev. D 2006, 74, 113006. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Discrete Flavor Symmetries and Models of Neutrino Mixing. Rev. Mod. Phys. 2010, 82, 2701–2729. [Google Scholar] [CrossRef]
- King, S.F.; Merle, A.; Morisi, S.; Shimizu, Y.; Tanimoto, M. Neutrino Mass and Mixing: From Theory to Experiment. New J. Phys. 2014, 16, 045018. [Google Scholar] [CrossRef]
- King, S.F. Models of Neutrino Mass, Mixing and CP Violation. J. Phys. G 2015, 42, 123001. [Google Scholar] [CrossRef]
- Merle, A.; Morisi, S.; Winter, W. Common origin of reactor and sterile neutrino mixing. J. High Energy Phys. 2014, 2014, 39. [Google Scholar] [CrossRef]
- Rivera-Agudelo, D.C.; Pérez-Lorenzana, A. Generating θ13 from sterile neutrinos in μ − τ symmetric models. Phys. Rev. D 2015, 92, 073009. [Google Scholar] [CrossRef]
- Fukuyama, T.; Nishiura, H. Mass matrix of Majorana neutrinos. arXiv 1997, arXiv:hep-ph/9702253v1. Available online: https://arxiv.org/abs/hep-ph/9702253v1 (accessed on 6 March 2020).
- Mohapatra, R.N.; Nussinov, S. Bimaximal neutrino mixing and neutrino mass matrix. Phys. Rev. D 1999, 60, 013002. [Google Scholar] [CrossRef]
- Lam, C. A 2-3 symmetry in neutrino oscillations. Phys. Lett. B 2001, 507, 214–218. [Google Scholar] [CrossRef]
- Harrison, P.; Scott, W. mu-tau reflection symmetry in lepton mixing and neutrino oscillations. Phys. Lett. B 2002, 547, 219–228. [Google Scholar] [CrossRef]
- Kitabayashi, T.; Yasue, M. S(2L) permutation symmetry for left-handed mu and tau families and neutrino oscillations in an SU(3)-L×SU(1)-N gauge model. Phys. Rev. D 2003, 67, 015006. [Google Scholar] [CrossRef]
- Grimus, W.; Lavoura, L. A Discrete symmetry group for maximal atmospheric neutrino mixing. Phys. Lett. B 2003, 572, 189–195. [Google Scholar] [CrossRef]
- Koide, Y. Universal texture of quark and lepton mass matrices with an extended flavor 2->3 symmetry. Phys. Rev. D 2004, 69, 093001. [Google Scholar] [CrossRef]
- Mohapatra, R.; Rodejohann, W. Broken mu-tau symmetry and leptonic CP violation. Phys. Rev. D 2005, 72, 053001. [Google Scholar] [CrossRef]
- Ma, E. Plato’s fire and the neutrino mass matrix. Mod. Phys. Lett. A 2002, 17, 2361–2370. [Google Scholar] [CrossRef]
- Ma, E.; Rajasekaran, G. Softly broken A(4) symmetry for nearly degenerate neutrino masses. Phys. Rev. D 2001, 64, 113012. [Google Scholar] [CrossRef]
- Babu, K.; Ma, E.; Valle, J. Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix. Phys. Lett. B 2003, 552, 207–213. [Google Scholar] [CrossRef]
- Grimus, W.; Lavoura, L. S(3)×Z(2) model for neutrino mass matrices. J. High Energy Phys. 2005, 2005, 13. [Google Scholar] [CrossRef][Green Version]
- Ma, E. Tetrahedral family symmetry and the neutrino mixing matrix. Mod. Phys. Lett. A 2005, 20, 2601–2606. [Google Scholar] [CrossRef]
- Raidal, M. Relation between the neutrino and quark mixing angles and grand unification. Phys. Rev. Lett. 2004, 93, 161801. [Google Scholar] [CrossRef]
- Minakata, H.; Smirnov, A.Y. Neutrino mixing and quark-lepton complementarity. Phys. Rev. D 2004, 70, 073009. [Google Scholar] [CrossRef]
- Ferrandis, J.; Pakvasa, S. Quark-lepton complenmentarity relation and neutrino mass hierarchy. Phys. Rev. D 2005, 71, 033004. [Google Scholar] [CrossRef]
- Antusch, S.; King, S.F.; Mohapatra, R.N. Quark-lepton complementarity in unified theories. Phys. Lett. 2005, B618, 150–161. [Google Scholar] [CrossRef]
- Hall, L.J.; Murayama, H.; Weiner, N. Neutrino mass anarchy. Phys. Rev. Lett. 2000, 84, 2572–2575. [Google Scholar] [CrossRef]
- De Gouvea, A.; Murayama, H. Neutrino Mixing Anarchy: Alive and Kicking. Phys. Lett. 2015, B747, 479–483. [Google Scholar] [CrossRef]
- Fogli, G.L.; Lisi, E. Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. Phys. Rev. D 1996, 54, 3667–3670. [Google Scholar] [CrossRef]
- Barger, V.; Marfatia, D.; Whisnant, K. Breaking eight-fold degeneracies in neutrino CP violation, mixing, and mass hierarchy. Phys. Rev. D 2002, 65, 073023. [Google Scholar] [CrossRef]
- Minakata, H.; Nunokawa, H. Exploring neutrino mixing with low energy superbeams. J. High Energy Phys. 2001, 2001, 1. [Google Scholar] [CrossRef][Green Version]
- Hiraide, K.; Minakata, H.; Nakaya, T.; Nunokawa, H.; Sugiyama, H.; Teves, W.J.C.; Zukanovich Funchal, R. Resolving θ23 degeneracy by accelerator and reactor neutrino oscillation experiments. Phys. Rev. D 2006, 73, 093008. [Google Scholar] [CrossRef]
- Burguet-Castell, J.; Gavela, M.; Gomez-Cadenas, J.; Hernandez, P.; Mena, O. Superbeams plus neutrino factory: The Golden path to leptonic CP violation. Nucl. Phys. B 2002, 646, 301–320. [Google Scholar] [CrossRef][Green Version]
- Agarwalla, S.K.; Prakash, S.; Sankar, S.U. Resolving the octant of theta23 with T2K and NOvA. J. High Energy Phys. 2013, 2013, 131. [Google Scholar] [CrossRef]
- Machado, P.A.N.; Minakata, H.; Nunokawa, H.; Zukanovich Funchal, R. What can we learn about the lepton CP phase in the next 10 years? J. High Energy Phys. 2014, 2014, 109. [Google Scholar] [CrossRef]
- Minakata, H.; Parke, S.J. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments. Phys. Rev. D 2013, 87, 113005. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ghoshal, P.; Goswami, S.; Raut, S.K. Octant sensitivity for large theta(13) in atmospheric and long baseline neutrino experiments. J. High Energy Phys. 2013, 2013, 10. [Google Scholar] [CrossRef][Green Version]
- Agarwalla, S.K.; Prakash, S.; Uma Sankar, S. Exploring the three flavor effects with future superbeams using liquid argon detectors. J. High Energy Phys. 2014, 2014, 87. [Google Scholar] [CrossRef][Green Version]
- Bass, M.; Bishai, M.; Cherdack, D.; Diwan, M.; Djurcic, Z.; Hernandez, J.; Lundberg, B.; Paolone, V.; Qian, X.; Rameika, R.; et al. Baseline optimization for the measurement of CP violation, mass hierarchy, and θ23 octant in a long-baseline neutrino oscillation experiment. Phys. Rev. D 2015, 91, 052015. [Google Scholar] [CrossRef]
- Bora, K.; Dutta, D.; Ghoshal, P. Determining the octant of θ23 at LBNE in conjunction with reactor experiments. Mod. Phys. Lett. A 2015, 30, 1550066. [Google Scholar] [CrossRef]
- Das, C.R.; Maalampi, J.; Pulido, J.; Vihonen, S. Determination of the θ23 octant in LBNO. J. High Energy Phys. 2015, 2015, 48. [Google Scholar] [CrossRef]
- Nath, N.; Ghosh, M.; Goswami, S. The physics of antineutrinos in DUNE and determination of octant and δCP. Nucl. Phys. B 2016, 913, 381–404. [Google Scholar] [CrossRef]
1 | We also mention the work [26], where the combination of MINOS, Daya-Bay, and Bugey-3 was considered. |
2 | The line-averaged constant Earth matter density has been computed using the Preliminary Reference Earth Model (PREM) [92]. |
3 | Note that we consider both CC and NC background events in our analysis and the NC background is independent of oscillation parameters. |
4 | In the 3 + 1 scheme, these plots were first introduced in Reference [96] for the discussion of T2K and NOA. |
5 | Note that both and are cyclic variables. Therefore, the union of the four corners in the top right panel of Figure 6 gives rise to a single connected region. |
6 | As shown in [102,103], in 4 flavors, the condition implies an approximate realization of symmetry, similar to what occurs in the standard 3-flavor scenario. Therefore, discovering that is maximal (non-maximal) would imply that symmetry is unbroken (broken), independently of the existence of a light sterile neutrino. |
7 | We stress that this should be taken only as formal analogy. In fact, the real NSI are mediated by heavy particles. In contrast, in the case of sterile neutrinos, there is no heavy mediator and the NSI-like structure of the Hamiltonian is connected to the circumstance that we are working in the new basis introduced in Equation (A7), which is rotated with respect to the original flavor basis. We mention that a similar analogy has been noticed in the field of solar neutrino conversion in the presence of sterile states [36]. |
Parameter | True Value | Marginalization Range |
---|---|---|
0.304 | Not marginalized | |
Not marginalized | ||
0.50 | [0.34, 0.68] | |
0.025 | Not marginalized | |
0.025 | Not marginalized | |
0, 0.025, 0.25 | Not marginalized | |
[–180,180] | [–180,180] | |
[–180,180] | [–180,180] | |
[–180,180] | [–180,180] | |
7.50 | Not marginalized | |
(NH) | 2.475 | Not marginalized |
(IH) | –2.4 | Not marginalized |
1.0 | Not marginalized |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, A. Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe 2020, 6, 41. https://doi.org/10.3390/universe6030041
Palazzo A. Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe. 2020; 6(3):41. https://doi.org/10.3390/universe6030041
Chicago/Turabian StylePalazzo, Antonio. 2020. "Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review" Universe 6, no. 3: 41. https://doi.org/10.3390/universe6030041
APA StylePalazzo, A. (2020). Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe, 6(3), 41. https://doi.org/10.3390/universe6030041