Clinical Implications of Upregulated RSAD2 Gene Expression in Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RSAD2 Gene Expression in HCC
2.2. Local HCC Patient Cohort
2.3. Demographic, Clinical, and Laboratory Data
2.4. Peripheral Blood RSAD2 Gene Expression Quantification
2.4.1. Isolation of Peripheral Blood Leucocytes and Extraction of Total RNA
2.4.2. cDNA Synthesis
2.4.3. RSAD2 Gene Expression Quantification
2.5. Health-Related Quality of Life (HRQoL) Assessment
2.6. Follow-Up
2.7. Sample Size Estimation and Missing Data Handling
2.8. Statistical Analyses
3. Results
3.1. RSAD2 Gene Expression in HCC Tumors
3.2. Characteristics of the HCC Patient Cohort
3.3. Peripheral Blood RSAD2 mRNA Transcript Level Analyses
3.4. Univariate Prognostic Analyses of RSAD2 mRNA Level and Clinical Factors
3.5. Multivariate Analyses for Independent Prognostic Factors
3.6. Correlates of RSAD2 mRNA Levels and Extra-Hepatic Metastases, as Well as Other Clinical Manifestations
3.7. Multivariate Correlation Models Between RSAD2 mRNA Transcript Levels and Extra-Hepatic Metastases, as Well as Other Clinical Manifestations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFP | α-fetoprotein |
| AJCC | the American Joint Committee on Cancer staging system |
| AGPC | acid guanidinium thiocyanate–phenol–chloroform |
| cDNA | complementary deoxyribonucleic acid |
| CI | confidence interval |
| CRP | C-reactive protein |
| dbGaP | the database of Genotypes and Phenotypes |
| ddCT | delta delta cycle threshold |
| EDTA | ethylenediaminetetraacetic acid |
| EORTC | the European Organization for Research and Treatment of Cancer |
| FC | fold change |
| GTEx | genotype–tissue expression |
| HRQoL | health-related quality of life |
| IL | interleukin |
| mRNA | messenger ribonucleic acid |
| OS | overall survival |
| PBMC | peripheral blood mononuclear cell |
| qPCR | quantitative polymerase chain reaction |
| RNA-seq | RNA sequencing |
| ROC | receiver operator characteristic |
| RSAD2 | radical S-adenosyl methionine domain containing 2 |
| SD | standard deviation |
| TCGA | The Cancer Genome Analysis |
| Viperin | virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible |
| WCC | white cell count |
References
- Konyn, P.; Ahmed, A.; Kim, D. Current epidemiology in hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Hernandez-Gea, V.; Toffanin, S.; Friedman, S.L.; Llovet, J.M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013, 144, 512–527. [Google Scholar] [CrossRef]
- Xia, Y.; Brown, Z.J.; Huang, H.; Tsung, A. Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Med. 2021, 10, 6374–6383. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, S.; Gao, M.; Chang, J.; Sun, J.; Qin, L.; Li, A.; Lv, F.; Lou, J.; Zhang, Y.; et al. Interferon-Induced Transmembrane Protein 3 Expression Upregulation Is Involved in Progression of Hepatocellular Carcinoma. BioMed Res. Int. 2021, 2021, 5612138. [Google Scholar] [CrossRef]
- Weinstein, A.G.; Godet, I.; Gilkes, D.M. The rise of viperin: The emerging role of viperin in cancer progression. J. Clin. Investig. 2022, 132, e165907. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Kim, J.J.; Yoo, J.; Kim, K.S.; Gu, Y.; Eom, J.; Jeong, H.; Kim, K.; Nam, K.T.; Park, Y.S.; et al. The interferon-inducible protein viperin controls cancer metabolic reprogramming to enhance cancer progression. J. Clin. Investig. 2022, 132, e157302. [Google Scholar] [CrossRef]
- Xin, Z.; Chen, H.; Xu, J.; Zhang, H.; Peng, Y.; Ren, J.; Guo, Q.; Song, J.; Jiao, L.; You, L.; et al. Exosomal mRNA in plasma serves as a predictive marker for microvascular invasion in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2024, 39, 2228–2238. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Shen, F.; Lau, W.Y. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2018, 33, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzo, V.R.; Cescon, M.; Ravaioli, M.; Grazi, G.L.; Ercolani, G.; Del Gaudio, M.; Cucchetti, A.; D’Errico-Grigioni, A.; Golfieri, R.; Pinna, A.D. Analysis of factors affecting recurrence of hepatocellular carcinoma after liver transplantation with a special focus on inflammation markers. Transplantation 2011, 91, 1279–1285. [Google Scholar] [CrossRef]
- Reyimu, A.; Chen, Y.; Song, X.; Zhou, W.; Dai, J.; Jiang, F. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis. World J. Surg. Oncol. 2021, 19, 240. [Google Scholar] [CrossRef]
- Sun, S.; Zhi, Z.; Su, Y.; Sun, J.; Li, Q. A CD8+ T cell-associated immune gene panel for prediction of the prognosis and immunotherapeutic effect of melanoma. Front. Immunol. 2022, 13, 1039565. [Google Scholar] [CrossRef]
- Lewis, M.W.; Wisniewska, K.; King, C.M.; Li, S.; Coffey, A.; Kelly, M.R.; Regner, M.J.; Franco, H.L. Enhancer RNA Transcription Is Essential for a Novel CSF1 Enhancer in Triple-Negative Breast Cancer. Cancers 2022, 14, 1852. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yang, Q.; Cui, Q.; Zhang, D.; Kong, D.; Liao, X.; Ren, J.; Gong, Y.; Wu, G. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J. Cell. Physiol. 2020, 235, 394–407. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. Quantification strategies in real-time PCR. In A–Z of Quantitative PCR; Bustin, S.A., Ed.; International University Line (IUL): La Jolla, CA, USA, 2004; pp. 87–112. [Google Scholar]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Blazeby, J.M.; Currie, E.; Zee, B.C.; Chie, W.C.; Poon, R.T.; Garden, O.J. Development of a questionnaire module to supplement the EORTC QLQ-C30 to assess quality of life in patients with hepatocellular carcinoma, the EORTC QLQ-HCC18. Eur. J. Cancer 2004, 40, 2439–2444. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mo, F.K.; Chan, S.L.; Hui, E.P.; Tang, N.S.; Koh, J.; Leung, L.K.; Poon, A.N.; Hui, J.; Chu, C.M.; et al. Prognostic values of EORTC QLQ-C30 and QLQ-HCC18 index-scores in patients with hepatocellular carcinoma—Clinical application of health-related quality-of-life data. BMC Cancer 2017, 17, 8. [Google Scholar] [CrossRef]
- Yeo, W.; Mo, F.K.; Koh, J.; Chan, A.T.; Leung, T.; Hui, P.; Chan, L.; Tang, A.; Lee, J.J.; Mok, T.S.; et al. Quality of life is predictive of survival in patients with unresectable hepatocellular carcinoma. Ann. Oncol. 2006, 17, 1083–1089. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ (Clin. Res. Ed.) 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Kamarajah, S.K.; Frankel, T.L.; Sonnenday, C.; Cho, C.S.; Nathan, H. Critical evaluation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with Hepatocellular Carcinoma (HCC): A Surveillance, Epidemiology, End Results (SEER) analysis. J. Surg. Oncol. 2018, 117, 644–650. [Google Scholar] [CrossRef]
- Llovet, J.M.; Bru, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef]
- Cserni, G.; Chmielik, E.; Cserni, B.; Tot, T. The new TNM-based staging of breast cancer. Virchows Arch. 2018, 472, 697–703. [Google Scholar] [CrossRef]
- Paner, G.P.; Stadler, W.M.; Hansel, D.E.; Montironi, R.; Lin, D.W.; Amin, M.B. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur. Urol. 2018, 73, 560–569. [Google Scholar] [CrossRef]
- Lollini, P.L.; De Giovanni, C.; Del Re, B.; Nicoletti, G.; Prodi, G.; Nanni, P. Interferon-mediated enhancement of metastasis. Are MHC Antigens Involved? Clin. Exp. Metastasis 1987, 5, 277–287. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, S.; Srivastava, R.K.; Nandi, A.; Thacker, G.; Murali, H.; Kim, S.; Baldeon, M.; Tobias, J.; Blanco, M.A.; et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat. Cell Biol. 2020, 22, 591–602. [Google Scholar] [CrossRef]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef]
- Bodewes, I.L.A.; van der Spek, P.J.; Leon, L.G.; Wijkhuijs, A.J.M.; van Helden-Meeuwsen, C.G.; Tas, L.; Schreurs, M.W.J.; van Daele, P.L.A.; Katsikis, P.D.; Versnel, M.A. Fatigue in Sjögren’s Syndrome: A Search for Biomarkers and Treatment Targets. Front. Immunol. 2019, 10, 312. [Google Scholar] [CrossRef]
- Chiba, F.; Soda, K.; Yamada, S.; Tokutake, Y.; Chohnan, S.; Konishi, F.; Rikiyama, T. The importance of tissue environment surrounding the tumor on the development of cancer cachexia. Int. J. Oncol. 2014, 44, 177–186. [Google Scholar] [CrossRef]


| Primer | Primer Sequence |
|---|---|
| RSAD2 gene (forward) primer sequence | 5′-CGACGGTGCGAGAATACCTGGGCAAGTTGG-3′ |
| RSAD2 gene (reverse) primer sequence | 5′-CCAGCGTCCCGTCACAGGAGATAGCGAGAATG-3′ |
| Ubiquitin C gene (forward) primer sequence | 5′-CGTCCGTCGCCAGCCGGGATTTGGGTCG-3′ |
| Ubiquitin C gene (reverse) primer sequence | 5′-CGACGCAGCCCACGAAGATCTGCATTGTCAAGT-3′ |
| Clinical Factors | Number | % | HR | 95% CI | p-Value |
|---|---|---|---|---|---|
| Age ≤ 65 years | 215 | 69.6 | 0.919 | 0.708–1.193 | 0.5248 |
| Male gender | 269 | 87.1 | 1.191 | 0.826–1.717 | 0.3482 |
| Hepatitis B | 248 | 80.3 | 0.944 | 0.702–1.270 | 0.7035 |
| Hepatitis C | 23 | 7.4 | 1.149 | 0.748–1.765 | 0.5253 |
| Hemoglobin ≤ 10 g/dL | 17 | 5.5 | 2.064 | 1.259–3.384 | 0.0041 |
| White cell count > 10 × 109/L | 38 | 12.3 | 2.856 | 1.998–4.082 | <0.0001 |
| Platelet count < 100 × 109/L | 47 | 15.2 | 0.643 | 0.455–0.909 | 0.0125 |
| International normalized ratio > 1.4 | 14 | 4.5 | 1.667 | 0.933–2.979 | 0.0843 |
| Bilirubin ≥ 20 μmol/L | 138 | 44.7 | 1.953 | 1.529–2.496 | <0.0001 |
| Albumin ≤ 35 g/L | 102 | 33.0 | 2.353 | 1.819–3.043 | <0.0001 |
| Alanine aminotransferase > 2 × ULN | 46 | 14.9 | 1.569 | 1.118–2.201 | 0.0091 |
| Alpha feto-protein ≥ 200 ng/mL | 140 | 45.3 | 2.421 | 1.888–3.104 | <0.0001 |
| RSAD2 mRNA level elevated | 76 | 24.6 | 1.490 | 1.130–1.965 | <0.0001 |
| Child–Pugh class | |||||
| A | 224 | 72.5 | 1.000 | - | - |
| B | 75 | 24.3 | 2.145 | 1.624–2.833 | <0.0001 |
| C | 10 | 3.2 | 10.006 | 5.129–19.520 | <0.0001 |
| BCLC | |||||
| A | 57 | 18.5 | 1.000 | - | - |
| B | 58 | 18.8 | 3.206 | 2.013–5.106 | <0.0001 |
| C | 157 | 50.8 | 5.827 | 3.847–8.827 | <0.0001 |
| D | 37 | 11.9 | 20.633 | 12.149–35.044 | <0.0001 |
| Tumor Morphology | |||||
| Uninodular | 98 | 31.7 | 1.000 | ||
| Multinodular | 90 | 29.1 | 2.967 | 2.118–4.157 | <0.0001 |
| Diffuse | 121 | 39.2 | 3.195 | 2.459–4.152 | <0.0001 |
| AJCC Stage | |||||
| I/II/III | 238 | 77 | 1.000 | - | - |
| IV (extra-hepatic metastasis) | 71 | 23 | 4.696 | 3.455–6.383 | <0.0001 |
| Continuous HRQoL Variables | Dichotomized HRQoL Variables | Index Score | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||||
| EORTC QLQ-C30 | ||||||||||||
| White cell count | 1.104 | 1.061 | 1.149 | <0.0001 | 1.102 | 1.060 | 1.145 | <0.0001 | 1.112 | 1.070 | 1.157 | <0.0001 |
| Hemoglobin level | 0.901 | 0.841 | 0.965 | 0.0027 | 0.888 | 0.830 | 0.950 | 0.0006 | 0.879 | 0.822 | 0.939 | 0.0001 |
| Extra-hepatic metastasis | 3.243 | 2.348 | 4.479 | <0.0001 | 3.403 | 2.461 | 4.707 | <0.0001 | 3.183 | 2.308 | 4.390 | <0.0001 |
| High RSAD2 mRNA level | 1.501 | 1.132 | 1.989 | 0.0047 | 1.509 | 1.137 | 2.001 | 0.0043 | 1.568 | 1.183 | 2.078 | 0.0018 |
| Physical functioning | 0.648 | 0.482 | 0.870 | 0.0039 | ||||||||
| Fatigue | 1.689 | 1.263 | 2.258 | 0.0004 | ||||||||
| Appetite loss | 1.657 | 1.354 | 2.028 | <0.0001 | 1.716 | 1.258 | 2.342 | 0.0007 | ||||
| C30 index score | 3.089 | 2.214 | 4.311 | <0.0001 | ||||||||
| EORTC QLQ-HCC18 | ||||||||||||
| White cell count | 1.107 | 1.065 | 1.151 | <0.0001 | 1.104 | 1.063 | 1.147 | <0.0001 | 1.104 | 1.062 | 1.147 | <0.0001 |
| Hemoglobin level | 0.884 | 0.825 | 0.947 | 0.0004 | 0.894 | 0.835 | 0.958 | 0.0015 | 0.875 | 0.818 | 0.936 | 0.0001 |
| Extra-hepatic metastasis | 3.249 | 2.346 | 4.499 | <0.0001 | 3.371 | 2.441 | 4.657 | <0.0001 | 3.382 | 2.452 | 4.664 | <0.0001 |
| High RSAD2 mRNA level | 1.563 | 1.178 | 2.072 | 0.0019 | 1.557 | 1.173 | 2.065 | 0.0022 | 1.520 | 1.147 | 2.016 | 0.0036 |
| Nutritional concern | 1.889 | 1.359 | 2.626 | 0.0002 | ||||||||
| Body image | 1.547 | 1.091 | 2.194 | 0.0144 | ||||||||
| Abdominal swelling | 1.357 | 1.095 | 1.681 | 0.0055 | 1.849 | 1.305 | 2.620 | 0.0005 | ||||
| HCC18 index score | 2.918 | 2.033 | 4.190 | <0.0001 | ||||||||
| Low RSAD2 mRNA Level | High RSAD2 mRNA Level | t-Test | Wilcoxon | Logistic Regression | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | p-Value * | p-Value ** | OR | 95% CI | p-Value *** | ||
| EORTC QLQ-C30 | ||||||||||
| Emotional functioning | 78.22 | 21.06 | 70.01 | 25.25 | 0.0313 | 0.0408 | 0.470 | 0.234 | 0.943 | 0.0335 |
| Social functioning | 81.58 | 26.48 | 65.26 | 30.46 | 0.0005 | 0.0002 | 0.352 | 0.191 | 0.649 | 0.0008 |
| Global health status | 62.43 | 23.79 | 51.12 | 24.97 | 0.0038 | 0.0036 | 0.389 | 0.202 | 0.749 | 0.0047 |
| Fatigue | 33.14 | 28.05 | 46.09 | 29.68 | 0.0052 | 0.0045 | 2.214 | 1.252 | 3.917 | 0.0063 |
| Dyspnea | 21.05 | 28.61 | 33.80 | 32.49 | 0.0104 | 0.0073 | 2.024 | 1.168 | 3.507 | 0.0122 |
| Appetite loss | 21.64 | 31.80 | 34.98 | 34.23 | 0.0120 | 0.0059 | 1.896 | 1.139 | 3.157 | 0.0138 |
| Financial difficulties | 42.11 | 34.80 | 55.16 | 37.25 | 0.0238 | 0.0237 | 1.629 | 1.063 | 2.497 | 0.0253 |
| C30 index score | 23.43 | 17.65 | 32.54 | 18.65 | 0.0018 | 0.0008 | 4.306 | 1.669 | 11.108 | 0.0025 |
| EORTC QLQ-HCC18 | ||||||||||
| Fatigue | 27.29 | 25.29 | 36.03 | 24.67 | 0.0259 | 0.0104 | 2.138 | 1.083 | 4.221 | 0.0282 |
| Body image | 19.88 | 23.45 | 28.05 | 22.84 | 0.0247 | 0.0061 | 2.328 | 1.102 | 4.917 | 0.0265 |
| Nutritional concern | 18.83 | 20.48 | 30.09 | 21.23 | 0.0008 | <0.0001 | 4.349 | 1.778 | 10.641 | 0.0013 |
| Fever | 3.22 | 10.65 | 6.57 | 14.58 | 0.0745 | 0.0478 | 3.206 | 0.716 | 14.359 | 0.1277 |
| HCC18 index score | 19.62 | 17.82 | 26.05 | 16.89 | 0.0178 | 0.0029 | 3.287 | 1.210 | 8.932 | 0.0199 |
| (i) EORTC QLQ-C30 with clinical factors. | ||||
| Logistic Regression | ||||
| OR | 95% CI | p-value | ||
| Social functioning | 0.352 | 0.191 | 0.649 | 0.0008 |
| (ii) C30 index score with clinical factors. | ||||
| Logistic Regression | ||||
| OR | 95% CI | p-value | ||
| C30 index score | 4.306 | 1.669 | 11.108 | 0.0025 |
| (iii) EORTC QLQ-HCC18 with clinical factors. | ||||
| Logistic Regression | ||||
| OR | 95% CI | p-value | ||
| Nutritional concern | 4.349 | 1.778 | 10.641 | 0.0013 |
| (iv) HCC18 index score with clinical factors. | ||||
| Logistic Regression | ||||
| OR | 95% CI | p-value | ||
| Extra-hepatic metastasis | 2.935 | 1.285 | 6.703 | 0.0106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Tang, N.L.S.; Chan, S.L.; Johnson, D.R.; Mo, F.; Koh, J.; Kwan, T.-K.; Hui, E.P.; Chan, L.L.; Lee, K.F.; et al. Clinical Implications of Upregulated RSAD2 Gene Expression in Hepatocellular Carcinoma. Diseases 2025, 13, 395. https://doi.org/10.3390/diseases13120395
Li L, Tang NLS, Chan SL, Johnson DR, Mo F, Koh J, Kwan T-K, Hui EP, Chan LL, Lee KF, et al. Clinical Implications of Upregulated RSAD2 Gene Expression in Hepatocellular Carcinoma. Diseases. 2025; 13(12):395. https://doi.org/10.3390/diseases13120395
Chicago/Turabian StyleLi, Leung, Nelson L. S. Tang, Stephen L. Chan, David Ryan Johnson, Frankie Mo, Jane Koh, Tsz-Ki Kwan, Edwin P. Hui, Landon Long Chan, Kit F. Lee, and et al. 2025. "Clinical Implications of Upregulated RSAD2 Gene Expression in Hepatocellular Carcinoma" Diseases 13, no. 12: 395. https://doi.org/10.3390/diseases13120395
APA StyleLi, L., Tang, N. L. S., Chan, S. L., Johnson, D. R., Mo, F., Koh, J., Kwan, T.-K., Hui, E. P., Chan, L. L., Lee, K. F., Yu, S. C. H., & Yeo, W. (2025). Clinical Implications of Upregulated RSAD2 Gene Expression in Hepatocellular Carcinoma. Diseases, 13(12), 395. https://doi.org/10.3390/diseases13120395

