An Autonomous Path Controller in a System on Chip for Shrimp Robot
Abstract
:1. Introduction
2. Inverse Optimal Controller
3. Shrimp’s Kinematic Model
4. Neural Identifier
5. Path Planning
6. Hardware Implementation
6.1. BlueBotics Shrimp III
6.2. Xilinx PYNQ-Z1
6.3. STMicroelectronics NUCLEO-F746ZG
7. Results
7.1. Experimental Results
7.2. Comparative Analysis
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RHONN | Recurrent High Order Neural Network |
EKF | Extended Kalman Filter |
HJB | Hamilton–Jacobi–Bellman |
CNN | Convolutional Neural Network |
CED | Canny Edge Detector |
References
- Bravo-Muñoz, I.; Lázaro-Galilea, J.L.; Gardel-Vicente, A. FPGA and SoC Devices Applied to New Trends in Image/Video and Signal Processing Fields. Electronics 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Wu, N.; Xiao, H.; Zhang, Y.; Zhou, F. Compact Convolutional Neural Network Accelerator for IoT Endpoint SoC. Electronics 2019, 8, 497. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Yi, W.; Zheng, Y.; Zhou, L. An All-Region State-of-Charge Estimator Based on Global Particle Swarm Optimization and Improved Extended Kalman Filter for Lithium-Ion Batteries. Electronics 2018, 6, 321. [Google Scholar] [CrossRef] [Green Version]
- Renteria-Cedano, J.; Rivera, J.; Sandoval-Ibarra, F.; Ortega-Cisneros, S.; Loo-Yau, R. SoC Design Based on a FPGA for a Configurable Neural Network Trained by Means of an EKF. Electronics 2019, 8, 761. [Google Scholar] [CrossRef] [Green Version]
- Ricco, M.; Mathe, L.; Hammami, M.; Franco, F.L.; Rossi, C.; Teodorescu, R. AA Capacitor Voltage Balancing Approach Based on Mapping Strategy for MMC Applications. Electronics 2019, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, E.N.; Alanis, A.Y.; Loukianov, A.G. Discrete Time High Order Neural Control; Springer: Berlin, Germany, 2008. [Google Scholar]
- Roka, R. Advanced Path Planning for Mobile Entities, 1st ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Lopez-Franco, C.; Hernandez-Barragan, J.; Alanis, A.Y.; Arana-Daniel, N. A soft computing approach for inverse kinematics of robot manipulators. Eng. Appl. Artif. Intell. 2018, 74, 104–120. [Google Scholar] [CrossRef]
- Lastire, E.A.; Sanchez, E.N.; Alanis, A.Y.; Ornelas-Tellez, F. Passivity analysis of discrete-time inverse optimal control for trajectory tracking. J. Frankl. Inst. 2016, 353, 3192–3206. [Google Scholar] [CrossRef]
- Rios, J.D.; Alanis, A.Y.; Lopez-Franco, M.; Lopez-Franco, C.; Arana-Daniel, N. Real-time neural identification and inverse optimal control for a tracked robot. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.D.; Alanis, A.Y.; Arana-Daniel, N.; Lopez-Franco, C. Neural Identifier-Control Scheme for Nonlinear Discrete Systems with Input Delay. In Fuzzy Logic in Intelligent System Design; Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W., Eds.; Springer International Publishing: Berlin, Germany, 2018; pp. 242–247. [Google Scholar]
- Vazquez, L.A.; Jurado, F.; Castañeda, C.E.; Alanis, A.Y. Real-Time Implementation of a Neural Integrator Backstepping Control via Recurrent Wavelet First Order Neural Network. Neural Process. Lett. 2018. [Google Scholar] [CrossRef]
- Alanis, A.Y.; Sanchez, E.N. Discrete-Time Neural Observers: Analysis and Applications, 1st ed.; Academic Press: London, UK, 2017. [Google Scholar]
- Rios, J.D.; Alanis, A.Y.; Lopez-Franco, C.; Arana-Daniel, N. RHONN identifier-control scheme for nonlinear discrete-time systems with unknown time-delays. J. Frankl. Inst. 2017, 355, 218–249. [Google Scholar] [CrossRef]
- Sanchez, E.N.; Ornelas-Tellez, F. Discrete-Time Inverse Optimal Control for Nonlinear Systems; CRC Press: New York, NY, USA, 2013. [Google Scholar]
- Kirk, D.E. Optimal Control Theory. An Introduction; Dover Publications, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Al-Tamimi, A.; Lewis, F.L.; Abu-Khalaf, M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Trans. Syst. Man Cybern. 2008, 38, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Krstic, M.; Bekiaris-Liberis, N. Robust adaptive control: Legacies and horizons. Int. J. Adapt. Control Signal Process. 2012, 27. [Google Scholar] [CrossRef] [Green Version]
- Camacho, O.; Fridman, L.; Chairez, I. Discrete time super-twisting observer for 2n dimensional systems. In Proceedings of the 8th International Conference on Electrical Engineering Computing Science and Automatic Control 2011 (CCE), Merida City, Mexico, 26–28 October 2011; pp. 1–6. [Google Scholar]
- Sanchez, E.N.; Ornelas-Tellez, F.; Loukianov, A.G. Discrete-time neural inverse optimal control for nonlinear systems via passivation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1327–1339. [Google Scholar]
- Lopez-Franco, M.; Sanchez, E.N.; Alanis, A.Y.; Arana-Daniel, N. Real-time decentralized inverse optimal neural control for a Shrimp robot. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Diriba, B.; Zhongmin, W. Design and Control for Differential Drive Mobile Robot. Int. J. Eng. Res. Technol. (IJERT) 2017, 6, 327–334. [Google Scholar]
- Kutz, M. Mechanical Engineers’ Handbook, Volume 2: Design, Instrumentation, and Controls; Wiley: Bethlehem, PA, USA, 2015. [Google Scholar]
- Norgaard, M. Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook; Springer: Berlin, Germany, 2003. [Google Scholar]
- Lewis, F.L.; Vrabie, D.L.; Syrmos, V.L. Optimal Control; John Wiley and Sons: New York, NY, USA, 2012. [Google Scholar]
- Grover, R.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises; John Wiley and Sons: New York, NY, USA, 2012. [Google Scholar]
- Alanis, A.Y.; Sanchez, E.N.; Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order nerual networks. IEEE Trans. Neural Netw. Learn. Syst. 2007, 18, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Barrau, A.; Bonnabel, S. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Trans. Autom. Control 2014, 62. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Tang, H.; Park, J. Energy Efficient Canny Edge Detector for Advanced Mobile Vision Applications. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1037–1046. [Google Scholar] [CrossRef]
- Kapur, S. Computer Vision with Python 3; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Ertam, F.; Aydın, G. Data classification with deep learning using Tensorflow. In Proceedings of the 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 755–758. [Google Scholar] [CrossRef]
- Sariff, N.; Buniyamin, N. An Overview of Autonomous Mobile Robot Path Planning Algorithms. In Proceedings of the 4th Student Conference on Research and Development (2006), Selangor, Malaysia, 27–28 June 2006; pp. 183–188. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009; pp. 595–601. [Google Scholar]
- Sakai, A.; Ingram, D.; Dinius, J.; Chawla, K.; Raffin, A.; Paques, A. PythonRobotics: A Python Code Collection of Robotics Algorithms. 2018. Available online: http://xxx.lanl.gov/abs/1808.10703 (accessed on 15 January 2020).
- Quintal, G.; Sanchez, E.N.; Alanis, A.Y.; Arana-Daniel, N.G. Real-time FPGA Decentralized Inverse Optimal Neural Control for a Shrimp Robot. In Proceedings of the 2015 10th System of Systems Engineering Conference (SoSE), San Antonio, TX, USA, 17–20 May 2015. [Google Scholar]
- Arana-Daniel, N.; Alanis, A.Y.; Lopez-Franco, C. Artificial Neural Networks for Robotics an Engineering Perspective; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
Process Time | Dijkstra in PC | A* in PC | Dijkstra in SoC | A* in SoC |
---|---|---|---|---|
Total time | 51.5293 s | 39.0263 s | 192.3780 s | 161.4557 s |
Edge detector time | 0.6654 s | 0.5661 s | 7.2546 s | 7.3049 s |
Map time | 0.0846 s | 0.0859 s | 1.0832 s | 1.0992 s |
Route time | 15.5700 s | 3.9897 s | 60.1439 s | 28.9141 s |
Control time | 0.0430 s | 0.0152 s | 0.3516 s | 0.3335 s |
Time to start motion | 16.3631 s | 4.6571 s | 68.8334 s | 37.6519 s |
Movement in route | 35.1661 s | 34.3692 s | 123.5445 s | 123.8038 s |
Process Time | Dijkstra in PC | A* in PC | Dijkstra in SoC | A* in SoC |
---|---|---|---|---|
Total time | 53.9585 s | 37.6130 s | 197.6433 s | 150.2245 s |
Edge detector time | 0.6343 s | 0.6338 s | 6.8708 s | 7.2072 s |
Map time | 0.0922 s | 0.1002 s | 1.0592 s | 1.0576 s |
Route time | 21.3259 s | 5.0940 s | 76.0095 s | 29.4022 s |
Control time | 0.0178 s | 0.0134 s | 0.3348 s | 0.3397 s |
Time to start motion | 22.0704 s | 5.8416 s | 84.2744 s | 38.0069 s |
Movement in route | 31.8881 s | 31.7714 s | 113.3688 s | 112.2176 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios-dV, S.; Lopez-Franco, M.; Rios, J.D.; Arana-Daniel, N.; Lopez-Franco, C.; Alanis, A.Y. An Autonomous Path Controller in a System on Chip for Shrimp Robot. Electronics 2020, 9, 441. https://doi.org/10.3390/electronics9030441
Barrios-dV S, Lopez-Franco M, Rios JD, Arana-Daniel N, Lopez-Franco C, Alanis AY. An Autonomous Path Controller in a System on Chip for Shrimp Robot. Electronics. 2020; 9(3):441. https://doi.org/10.3390/electronics9030441
Chicago/Turabian StyleBarrios-dV, Sergio, Michel Lopez-Franco, Jorge D. Rios, Nancy Arana-Daniel, Carlos Lopez-Franco, and Alma Y. Alanis. 2020. "An Autonomous Path Controller in a System on Chip for Shrimp Robot" Electronics 9, no. 3: 441. https://doi.org/10.3390/electronics9030441
APA StyleBarrios-dV, S., Lopez-Franco, M., Rios, J. D., Arana-Daniel, N., Lopez-Franco, C., & Alanis, A. Y. (2020). An Autonomous Path Controller in a System on Chip for Shrimp Robot. Electronics, 9(3), 441. https://doi.org/10.3390/electronics9030441