Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications
Abstract
:1. Introduction
2. Resonator Analysis
2.1. FOLSIR Analysis
2.2. FUIR Analysis
3. Filter Design
3.1. Dual-Wideband BPF Design
3.2. Tri-Wideband BPF Design
4. Manufacture and Measurement
4.1. Dual-Wideband BPF Manufacture and Measurement
4.2. Tri-Wideband BPF Manufacture and Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The 5G Infrastructure Public Private Partnership (5G PPP). View on 5G Architecture, 2016. Available online: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-WP-July-2016.pdf (accessed on 20 December 2019).
- Wu, S.; Razavi, B. A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J. Solid State Circuits 1998, 33, 2178–2185. [Google Scholar] [CrossRef]
- Shi, L.; Gao, J. Multitransmission Zero Dual-Band Bandpass Filter Using Nonresonating Node for 5G Millimetre-Wave Application. Act. Passiv. Electron. Compon. 2018, 2018. [Google Scholar] [CrossRef]
- Xu, J.; Wu, W.; Miao, C. Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator. IEEE Trans. Microw. Theory Tech. 2013, 61, 3187–3199. [Google Scholar] [CrossRef]
- Luo, S.; Zhu, L.; Sun, S. Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator. IEEE Trans. Microw. Theory Tech. 2011, 59, 1222–1229. [Google Scholar]
- Sun, S.J.; Su, T.; Deng, K.; Wu, B.; Liang, C.H. Shorted-ended stepped-impedance dual-resonance resonator and its application to bandpass filters. IEEE Trans. Microw. Theory Tech. 2013, 61, 3209–3215. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Luo, S. Dual-mode dual-band bandpass filters with adjustable frequency ratiousing an annular ring resonator. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 13–15. [Google Scholar] [CrossRef]
- Luo, S.; Zhu, L.; Sun, S. A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes. IEEE Trans. Microw. Theory Tech. 2010, 58, 3427–3432. [Google Scholar] [CrossRef]
- Liu, H.; Lei, J.; Zhao, Y.; Li, S.; Guan, X. Compact triple-band bandpass filter using multimode stubs loaded resonator. Microw. Opt. Technol. Lett. 2013, 55, 2672–2675. [Google Scholar] [CrossRef]
- Tantiviwat, S.; Ibrahim, S.Z.; Razalli, M.S. Design of quad-channel diplexer and tri-band bandpass filter based on multiple-mode stub-loaded resonators. Radioengineering 2019, 27, 129–135. [Google Scholar] [CrossRef]
- Yu, B.; Jia, B.; Zhu, Z. A compact tri-band bandpass filter using novel stub-loaded resonator. Microw. Opt. Technol. Lett. 2015, 57, 2797–2800. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, X.Y.; Xue, Q. Compact Tri-Band Bandpass Filter Using Novel Eight-Mode Resonator for 5G WiFi Application. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 660–662. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yun, S.W. A tri-band bandpass filter using stub-loaded SIRs with controllable bandwidths. Microw. Opt. Technol. Lett. 2014, 56, 2907–2910. [Google Scholar] [CrossRef]
- Ren, B.; Ma, Z.; Liu, H.; Guan, X.; Wen, P.; Wang, X.; Masataka, O. Miniature dual-band bandpass filter using modified quarter-wavelength SIRs with controllable passbands. Electron. Lett. 2018, 55, 38–40. [Google Scholar] [CrossRef]
- Gomez-Garcia, R.; Yang, L.; Munoz-Ferreras, J.M.; Psychogiou, D. Selectivity-Enhancement Technique for Stepped-Impedance-Resonator Dual-Passband Filters. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 453–455. [Google Scholar] [CrossRef]
- Li, C.Y.; Chen, J.X.; Tang, H.; Zhou, L.H.; Shi, J.; Bao, Z.H. Tri-band bandpass filter with wide stop-band using stub-loaded triple-mode resonator. J. Electromagn. Waves Appl. 2013, 27, 439–447. [Google Scholar] [CrossRef]
- Chen, F.; Qiu, J.; Chu, Q. Design of compact tri-band bandpass filter using centrally loaded resonators. Microw. Opt. Technol. Lett. 2013, 55, 2695–2699. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, J.-X.; Xu, Q.; Li, S.-M. Dual-Band Bandpass Filters Using Stub-loaded Resonators. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 583–585. [Google Scholar] [CrossRef]
- Chen, F.; Chu, Q.; Tu, Z. Design of compact dual-band bandpass filter using short stub loaded resonator. Microw. Opt. Technol. Lett. 2009, 51, 959–963. [Google Scholar] [CrossRef]
- Wu, X.; Chu, Q.; Tian, X. Dual-band bandpass filter using novel side-stub-loaded resonator. Microw. Opt. Technol. Lett. 2012, 54, 362–364. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.J.; Zhou, Y.G.; Niu, Z.Y. Integrated dual-band BPF and single-band BSF for tri-band filter design. J. Electromagn. Waves Appl. 2011, 25, 2420–2428. [Google Scholar] [CrossRef]
- Huang, J.; Wen, J.; Lyu, Z. A triple broadband microwave filter synthesis using nonuniform lines. Microw. Opt. Technol. Lett. 2008, 50, 3039–3045. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y. Compact semi-lumped dual- and tri-wideband bandpass filters. IET Microw. Antennas Propag. 2017, 11, 53–58. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Y.; Li, D.; Fan, Y.; Li, J.L.W.; Joines, W.T.; Liu, Q.H. Novel design of a compact triple-band bandpass filter using short stub-loaded SIRs and embedded SIRs structure. Prog. Electromagn. Res. 2013, 142, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Xiong, Y.; Zhang, F.; Wang, L.; Sun, Y.; Zhao, X.; He, M.; Ji, L.; Zhang, X.; Zhang, B. A triple-wideband bandpass filter with controllable bandwidths based on stub-loaded resonators. Int. J. Microw. Wirel. Technol. 2018, 10, 904–910. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, C.; Kim, N.Y. Dual-/triple-wideband microstrip bandpass filter using independent triple-mode stub-loaded resonator. Microw. Opt. Technol. Lett. 2018, 60, 56–64. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, L. Compact tri-band bandpass filter based on λ/4 resonators with U-folded coupled-line. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 258–260. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Y.; Liu, H.; Ma, Z. Design of triple-band bandpass filter using quad-mode stepped impedance resonator (SIR) with shorted stub. IEICE Electron. Express 2018, 15, 20171219. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.X.; Wu, X.H.; Chen, F.C. Novel compact tri-band bandpass filter with controllable bandwidths. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 655–657. [Google Scholar] [CrossRef]
- Chen, C.F.; Huang, T.Y.; Wu, R.B. Design of dual- and triple-passband filters using alternately cascaded multiband resonators. IEEE Trans. Microw. Theory Tech. 2006, 54, 3550–3558. [Google Scholar] [CrossRef]
- GaoDing, N. A controllable compact dual-band bandpass filter using loaded open-loop resonators. IEICE Electron. Express 2016, 13, 20160470. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fu, Q.; Liang, F.; Zhao, S. Dual-band filter based on air-filled SIW cavity for 5G application. Microw. Opt. Technol. Lett. 2019, 61, 2599–2606. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Yu, H.; Li, N.; Wang, S.; Shen, C.; Dai, Z.; Gan, D.; Yang, R.; He, S.; et al. Transparent graphene microstrip filters for wireless communications. J. Phys. D. Appl. Phys. 2017, 50, 34LT01. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.H.; Feng, X.; Fan, Y. Tri-band filter with multiple transmission zeros and controllable bandwidths. Int. J. Microw. Wirel. Technol. 2016, 8, 9–13. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhang, X.; Qu, L.; Yong, F. Compact quint-band Bandpass Filter design in a rigorous manner utilizing multimode stub-loaded taper. Microw. Opt. Technol. Lett. 2018, 60, 1230–1234. [Google Scholar] [CrossRef]
- Gan, D.; He, S.; Dai, Z.; Wang, J. A quad-band bandpass filter using split-ring based on T-shaped stub-loaded step-impedance resonators. Microw. Opt. Technol. Lett. 2017, 59, 2098–2104. [Google Scholar] [CrossRef]
- Denis, B.; Song, K.; Zhang, F. Compact dual-band bandpass filter using open stub-loaded stepped impedance resonator with cross-slots. Int. J. Microw. Wirel. Technol. 2017, 9, 269–274. [Google Scholar] [CrossRef]
- Chu, Q.-X.; Chen, F.-C. A compact dual-band bandpass filter using meandering stepped impedance resonators. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 320–322. [Google Scholar]
- Ma, K.; Ma, J.G.; Yeo, K.S.; Do, M.A. A compact size coupling controllable filter with separate electric and magnetic coupling paths. IEEE Trans. Microw. Theory Tech. 2006, 54, 1113–1119. [Google Scholar]
- Hong, J.S. Microstrip Filters for RF/Microwave Applications, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011; ISBN 9780470408773. [Google Scholar]
- Zhou, W.; Liu, C.; Huang, G.L.; Xia, W.; Zhang, J.; He, D.; Wu, Z. Design and manufacture of lowpass microstrip filter with high conductivity graphene films. Microw. Opt. Technol. Lett. 2019, 61, 972–978. [Google Scholar] [CrossRef]
- Li, K.; Kang, G.; Liu, H.; Zhao, Z. High-selectivity adjustable dual-band bandpass filter using a quantic- mode resonator. Microsyst. Technol. 2019, 8, 1–4. [Google Scholar] [CrossRef]
CF(GHz) | FBW(%) | IL(dB) | RL(dB) | Size (λg × λg) | DGSs or Vias | |
---|---|---|---|---|---|---|
[8] | 2.38/4.87 | 6.7/8 | 2/1.4 | - | - | No |
[18] | 1.84/2.9 | 8.1/6.8 | 1.7/1.6 | >10 | - | No |
[19] | 2.4/3.5 | 9.6/6 | 1.4/1.35 | 15.3/16.2 | 0.0306 | Yes |
[31] | 3/5.34 | 10/3.7 | 0.19/2.34 | - | 0.039 | No |
[32] | 3.5/4.9 | 5.4/2.2 | 0.75/1.3 | - | 1.9803 | Yes |
[33] | 3.4/6.7 | 4.8/4 | 3.8/3.7 | 18.7/14.6 | - | No |
[37] | 2.4/3.5 | 9.6/7.7 | 1.42/1.19 | 25/20.1 | 0.482 | No |
[42] | 2.3/3.2 | 11.3/9.4 | 1.1/1.7 | 40/12.0 | 0.228 | No |
This Work | 2.13/3.47 | 14/11.2 | 0.73/0.9 | 32/33 | 0.0471 | No |
CF(GHz) | FBW(%) | IL(dB) | RL(dB) | Size (λg × λg) | DGSs or Vias | |
---|---|---|---|---|---|---|
[6] | 1.5/2.45/3.5 | 7.5/5.8/3.6 | 1.17/1.02/2.17 | >17 | 0.0308 | Yes |
[10] | 1.75/2.45/3.5 | 5.7/4.1/5.7 | 1.4/1.9/1.9 | >12 | 0.036 | Yes |
[13] | 1.57/2.4/3.5 | 12.9/8.1/4.6 | 0.6/1/2.4 | 13/50 | 0.0988 | Yes |
[17] | 1.57/2.45/5.2 | 6.8/7.8/8.06 | 1.2/1.2/1.3 | >17 | 0.0276 | Yes |
[24] | 2.45/3.5/5.2 | 9.6/13.1/7.9 | 1.2/1.5/1.6 | 16.3/17.9/12.9 | 0.0486 | Yes |
[27] | 1.8/3.5/5.8 | 7/5/3.5 | 0.88/1.33/1.77 | 21.3/15.84/15.72 | 0.0572 | Yes |
[29] | 2.41/3.56/5.29 | 6.2/12.2/11.8 | 1.9/1.42/1.51 | 14.3/15/16.8 | 0.0255 | Yes |
[30] | 2.5/3.6/5.1 | 4.0/4.0/6.0 | 2.9/2.7/2.3 | >17 | 0.1716 | No |
[34] | 1.8/2.4/5.8 | 8.9/12.5/5.3 | 1.5/0.9/2.9 | 15/23/19 | 0.0272 | Yes |
This Work | 2.17/3.51/4.86 | 12.4/11.4/13.3 | 0.46/0.49/1.3 | 32/33/11.6 | 0.0508 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Liu, C.; Zhang, B.; Song, R.; Wu, Z.; Zhang, J.; He, D. Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications. Electronics 2020, 9, 205. https://doi.org/10.3390/electronics9020205
Hou Z, Liu C, Zhang B, Song R, Wu Z, Zhang J, He D. Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications. Electronics. 2020; 9(2):205. https://doi.org/10.3390/electronics9020205
Chicago/Turabian StyleHou, Zhanyong, Chengguo Liu, Bin Zhang, Rongguo Song, Zhipeng Wu, Jingwei Zhang, and Daping He. 2020. "Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications" Electronics 9, no. 2: 205. https://doi.org/10.3390/electronics9020205
APA StyleHou, Z., Liu, C., Zhang, B., Song, R., Wu, Z., Zhang, J., & He, D. (2020). Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications. Electronics, 9(2), 205. https://doi.org/10.3390/electronics9020205