Numerical Study of Sub-Gap Density of States Dependent Electrical Characteristics in Amorphous In-Ga-Zn-O Thin-Film Transistors
Abstract
:1. Introduction
2. Simulation Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, W.; Someya, T. Emerging trands in flexible active multielectrode arrays. Chem. Mater. 2019, 31, 6347–6358. [Google Scholar] [CrossRef]
- Nela, L.; Tang, J.; Cao, Q.; Tulevski, G.; Han, S.-J. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin. Nano Lett. 2018, 18, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Oh, B.; Jo, S.; Park, S.; An, H.S.; Lee, S.; Cheong, W.H.; Yoo, S.; Park, J.-U. Human-Interactive, Active-Matrix Displays for Visualization of Tactile Pressures. Adv. Mater. Technol. 2019, 4, 1900082. [Google Scholar] [CrossRef]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef]
- Myny, K.; Lai, Y.-C.; Papadopoulos, N.; Roose, F.D.; Ameys, M.; Willegems, M.; Smout, S.; Steudel, S.; Dehaene, W.; Genoe, J. A Flexible ISO14443-A Compliant 7.5mW 128b Metal-Oxide NFC Barcode Tag with Direct Clock Division Circuit from 13.56MHz Carrier. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 258–259. [Google Scholar]
- Pecunia, V.; Fattori, M.; Abdinia, S.; Sirringhaus, H.; Cantatore, E. Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef]
- Trung, T.-Q.; Lee, N.-E. Materials and devices for transparent stretchable electronics. J. Mater. Chem. C 2017, 5, 2202–2222. [Google Scholar] [CrossRef]
- Sharma, B.K.; Ann, J.-H. Flexible and Stretchable Oxide Electronics. Adv. Electron. Mater. 2016, 2, 1600105. [Google Scholar] [CrossRef]
- Diao, Y.; Tee, B.C.-K.; Giri, G.; Xu, J.; Kim, D.H.; Becerril, H.A.; Stoltenberg, R.M.; Lee, T.H.; Xue, G.; Mannsfeld, S.C.B.; et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 2013, 12, 665–671. [Google Scholar] [CrossRef]
- Jang, J.; Kitsomboonloha, R.; Swisher, S.L.; Park, E.S.; Kang, H.; Subramanian, V. Transparent High-Performance Thin Film Transistors from Solution-Processed SnO2/ZrO2 Gel-like Precursors. Adv. Mater. 2012, 25, 1042–1047. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Petti, L.; Muenzenrieder, N.; Vogt, C.; Faber, H.; Buethe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Troester, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Tak, Y.J.; Yoon, D.H.; Yoon, S.; Choi, U.H.; Sabri, M.M.; Ahn, B.D.; Kim, H.J. Enhanced Electrical Characteristics and Stability via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In–Ga–Zn–O Thin-Film Transistors. ACS Appl. Mater. Interfaces 2014, 6, 6399–6405. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.-W.; Kim, J.; Kim, K.-T.; Kang, J.-G.; Kim, M.-G.; Kim, K.-H.; Ko, H.; Kim, Y.-H.; Park, S.K. Highly Stable and Imperceptible Electronics Utilizing Photoactivated Heterogeneous Sol-Gel Metal–Oxide Dielectrics and Semiconductors. Adv. Mater. 2015, 27, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Nahm, H.H.; Kim, Y.S.; Kim, D.H. Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state. Phys. Status Solidi B 2012, 249, 1277–1281. [Google Scholar] [CrossRef]
- Kang, Y.; Ahn, B.D.; Song, J.H.; Mo, Y.G.; Nahm, H.H.; Han, S.; Jeong, J.K. Hydrogen Bistability as the Origin of Photo-Bias-Thermal Instabilities in Amorphous Oxide Semiconductors. Adv. Electron. Mater. 2015, 1, 1400006. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, D.-K.; Park, J.-I.; Kang, I.M.; Jang, J.; Kim, H.; Lang, P.; Bae, J.-H. Numerical analysis on effective mass and traps density dependence of electrical characteristics of a-IGZO thin-film transistors. Electronics 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Takagi, A.; Nomura, K.; Ohta, H.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films 2005, 486, 38–41. [Google Scholar] [CrossRef]
- Altas User’s Manual; Silvaco Inc.: Santa Clara, CA, USA, 2016.
- Wakimura, G.; Yamauchi, Y.; Kamakura, Y. Simulation and modeling of off-leakage current in InGaZnO thin-film transistors. J. Adv. Simulat. Sci. Eng. 2015, 2, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ghaffarzadeh, K.; Nathan, A.; Robertson, J.; Jeon, S.; Kim, C.; Song, I.-H.; Chung, U.I. Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 2011, 98, 203508. [Google Scholar] [CrossRef]
- Ryu, B.; Noh, H.K.; Choi, E.A.; Chang, K.J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit | Description |
---|---|---|---|
µn | 15 | cm2 V−1·s−1 | Electron mobility |
µp | 0.1 | cm2 V−1·s−1 | Hole mobility |
NTA | 1 × 1018 | cm−3 eV−1 | Density of tail states at conduction band |
NTD | 1 × 1020 | cm−3 eV−1 | Density of tail states at valence band |
NGD | 5 × 1016 | cm−3 eV−1 | Density of Gauss donor-like states |
NGA | 5 × 1016 | cm−3 eV−1 | Density of Gauss acceptor-like states |
WTA | 0.08 | eV | Characteristic decay energy of acceptor-like tail states |
WTD | 0.06 | eV | Characteristic decay energy of donor-like tail states |
WGD | 0.1 | eV | Characteristic decay energy of donor-like Gauss states |
WGA | 0.2 | eV | Characteristic decay energy of acceptor-like Gauss states |
EGD | 2.7 | eV | Energy corresponding to the peak for donor-like Gauss states |
EGA | 0.5 | eV | Energy corresponding to the peak for acceptor-like Gauss states |
NC | 5 × 1018 | cm−3 eV−1 | Effective density of states for conduction band |
NV | 2.4 × 1021 | cm−3 eV−1 | Effective density of states for valance band |
EG | 3.05 | eV | Energy band |
Xe | 4.16 | eV | Electron affinity |
MC | 0.34 Mo | Kg | Effective mass of conduction band |
MV | 21 Mo | Kg | Effective mass of valence band |
ɛs | 10ɛo | Fm−1 | Dielectric constant |
n | 1015 | cm−3 | Electron carrier concentration |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-K.; Park, J.; Zhang, X.; Park, J.; Bae, J.-H. Numerical Study of Sub-Gap Density of States Dependent Electrical Characteristics in Amorphous In-Ga-Zn-O Thin-Film Transistors. Electronics 2020, 9, 1652. https://doi.org/10.3390/electronics9101652
Kim D-K, Park J, Zhang X, Park J, Bae J-H. Numerical Study of Sub-Gap Density of States Dependent Electrical Characteristics in Amorphous In-Ga-Zn-O Thin-Film Transistors. Electronics. 2020; 9(10):1652. https://doi.org/10.3390/electronics9101652
Chicago/Turabian StyleKim, Do-Kyung, Jihwan Park, Xue Zhang, Jaehoon Park, and Jin-Hyuk Bae. 2020. "Numerical Study of Sub-Gap Density of States Dependent Electrical Characteristics in Amorphous In-Ga-Zn-O Thin-Film Transistors" Electronics 9, no. 10: 1652. https://doi.org/10.3390/electronics9101652
APA StyleKim, D.-K., Park, J., Zhang, X., Park, J., & Bae, J.-H. (2020). Numerical Study of Sub-Gap Density of States Dependent Electrical Characteristics in Amorphous In-Ga-Zn-O Thin-Film Transistors. Electronics, 9(10), 1652. https://doi.org/10.3390/electronics9101652