Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biosurfactants with Low Molecular Weight
3.1.1. Glycolipids
Rhamnolipids
Trehalose Lipids
Sophorolipids
Mannosylerythritol Lipid
- Number and position of the acetyl group on mannose or erythritol or both.
- Number of acylation in mannose.
- Fatty acid chain, length and their saturation [106].
Cellobiolipids
3.1.2. Lipopeptides and Lipoprotein
Surfactin
- Antimycoplasmal, antibacterial, and antiviral activity
- 2.
- Anti-inflammatory applications
- 3.
- Anticancer activity
- 4.
- Antiadhesive applications
- 5.
- Environmental applications
- 6.
- Biocontrol applications
- 7.
- Other application
Iturin
Fengycin
Viscosin
Lichenysin
Gramicidin
Polymyxins
Antibiotic TA (Megovalcin)
3.1.3. Fatty Acids, Phospholipids, and Neutral Lipids
Corynomycolic Acids
Spiculisporic Acid
Phosphatidylethanolamines
3.2. Biosurfactants with High Molecular Weight
3.2.1. Particulate Biosurfactant
Vesicles
Whole Microbial Cells
3.2.2. Polymeric Biosurfactant
Emulsan
Liposan
Alasan
Biodispersan
Polysaccharide Protein Complex
Mannoproteins
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kitamoto, D.; Isoda, H.; Nakahara, T. Functions and potential applications of glycolipid biosurfactants from energy-saving materials to gene delivery carrier. J. Biosci. Bioeng. 2002, 94, 187. [Google Scholar] [CrossRef]
- Vance-Harrop, M.H.; de Gusmão, N.B.; de Campos-Takaki, G.M. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources. Braz. J. Microbiol. 2003, 34, 120–123. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. RSC Adv. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Coronel León, J.; Manresa Presas, M.Á.; Marqué s Villavecchia, A.M. Lichenysin production and application in the pharmaceutical field. In Recent Advances in Pharmaceutical Sciences VI; Muñoz Torrero, D., Domínguez García, À., Manresa Presas, M.Á., Eds.; Research Signpost, 37/661 (2), Fort P.O. Trivandrum-695 023; Research Signpost: Kerala, India, 2016; Volume 9, p. 147. ISBN 978-81-308-0566-5. [Google Scholar]
- Vijayakumar, S.; Saravanan, V. Biosurfactants-types, sources and applications. Res. J. Microbiol. 2015, 10, 181–192. [Google Scholar]
- Burger, M.M.; Glaser, L.; Burton, R.M. The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 1963, 238, 2595–2602. [Google Scholar] [PubMed]
- Guerra-Santos, L.H.; Käppeli, O.; Fiechter, A. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 1986, 24, 443–448. [Google Scholar] [CrossRef]
- Ristau, E.; Wagner, F. Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol. Lett. 1983, 5, 95–100. [Google Scholar] [CrossRef]
- Kilburn, J.O.; Takayama, K. Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 1981, 20, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, A.; Bock, H.; Wagner, F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 1982, 44, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.R. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J. Colloid Interface Sci. 2015, 449, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Satpute, S.K.; Banpurkar, A.G.; Dhakephalkar, P.K.; Banat, I.M.; Chopade, B.A. Methods for investigating biosurfactants and bioemulsifiers: A review. Crit. Rev. Biotechnol. 2010, 30, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in cosmetic formulations: Trends and challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [CrossRef]
- Kruglyakov, P.M. Hydrophile-Lipophile Balance of Surfactants and Solid Particles: Physicochemical Aspects and Applications; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 9780444502575. [Google Scholar]
- Maneerat, S. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 2005, 27, 1263–1272. [Google Scholar]
- Rosen, M.J. Characteristic features of surfactants. In Surfactants Interfacial Phenom, 4th ed.; Rosen, M.J., Kunjappu, J.T., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2012; Volume 4, pp. 1–37. [Google Scholar]
- Cameotra, S.S.; Makkar, R.S. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 2004, 7, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Mohan, P.K.; Nakhla, G.; Yanful, E.K. Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res. 2006, 40, 533–540. [Google Scholar] [CrossRef]
- Fakruddin, M. Biosurfactant: Production and application. J. Pet. Environ. Biotechnol. 2012, 3, 2. [Google Scholar]
- Bujaka, T.; Wasilewskib, T.; Nizioł-Łukaszewska, Z. Role of macromolecules in the safety of use of body wash cosmetics. Colloid Surfaces B 2015, 135, 497–503. [Google Scholar] [CrossRef]
- Benincasa, M. Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr. Microbiol. 2007, 54, 445–449. [Google Scholar] [CrossRef]
- Voet, D.; Voet, J.G.; Pratt, C.W. Fundamentals of Biochemistry: Life at the Molecular Level; John Wiley & Sons: New York, NY, USA, 2013; Volume 32, p. 1077. [Google Scholar]
- Mnif, I.; Ghribi, D. Glycolipid biosurfactants: Main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 2016, 96, 4310–4320. [Google Scholar] [CrossRef]
- Lunaa, J.M.; Rufinoa, R.D.; Campos-Takakia, G.M.; Sarubbo, L.A. Properties of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Chem. Eng. 2012, 27, 67–72. [Google Scholar]
- Saimmai, A.; Rukadee, O.; Onlamool, T.; Sobhon, V.; Maneerat, S. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT. World J. Microbiol. Biotechnol. 2012, 28, 2973. [Google Scholar] [CrossRef]
- Hayder, N.H.; Alaa, S.; Abdulmalik, H. Optimized conditions for bioemulsifier production by local Streptomyces sp. SS 20 isolated from hydrocarbon contaminated soil. Rom. Biotechnol. Lett. 2014, 19, 8979–8993. [Google Scholar]
- 28. Kim, H.S.; Jeon, J.W.; Kim, S.B.; Oh, H.M.; Kwon, T.J.; Yoon, B.D. Surface and physic-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida Antarctica. Biotechnol. Lett. 2002, 24, 1637–1641. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Natural surfactants used in cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef]
- Fukuoka, T.; Morita, T.; Saika, A.; Habe, H. Application of Glycolipid Biosurfactants as Surface Modifiers in Bioplastics. J. Oleo Sci. 2018, 67, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedaraman, N.; Venkatesh, N. The effect of medium composition on the production of sophorolipids and the tensiometric properties by Starmerella bombicola MTCC 1910. Pol. J. Chem. Technol. 2010, 12, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Kiran, G.S.; Thomas, T.A.; Selvin, J. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf. B Biointerfaces 2010, 78, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Nalini, S.; Parthasarathi, R. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid–state fermentation and its application as biocontrol agent. Bioresour. Technol. 2014, 173, 231–238. [Google Scholar] [CrossRef]
- Abbasi, H.; Sharafi, H.; Alidost, L.; Bodagh, A.; Zahiri, H.S.; Noghabi, K.A. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples. Prep. Biochem. Biotechnol. 2013, 43, 398–414. [Google Scholar] [CrossRef]
- Shao, Z. Trehalolipids. Biosurfactants Microbiol. Monogr. 2011, 20, 121–143. [Google Scholar]
- Yuan, X.; Ling, H.; Chengjun, W.; Yiwe, G.; Zhi, J.; Chaoyue, L.; Shaojing, J.; Shanshan, L. Labrys sp. Strain for Producing Biosurfactant. Patent CN109022329, 10 September 2018. [Google Scholar]
- Kuyukina, M.S. In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull. Exp. Biol. Med. 2007, 144, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Gein, S.V.; Kuyukina, M.S.; Ivshina, I.B.; Baeva, T.A.; Chereshnev, V.A. In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcusruber: Role of monocyte adhesion. Cytotechnology 2011, 63, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, H.; Sasaki, M.; Komatsu, K.; Miura, A.; Matsuda, H. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour. Technol. 2009, 100, 572–577. [Google Scholar] [CrossRef]
- Munstermann, B.; Poremba, K.; Lang, S.; Wagner, F. Studies on environmental compatibility: Influence of (bio) surfactants on marine microbial and enzymatic systems. In Proceedings of the International Symposium on Soil Decontamination Using Biological Processes, Karlsruhe, Germany, 6–9 December 1992. [Google Scholar]
- Flasz, A.; Rocha, C.A.; Mosquera, B. A comparative study of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC. Med. Sci. Res. 1998, 26, 181–185. [Google Scholar]
- Das, K.; Mukherjee, A.K. Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl. Microbiol. Biotechnol. 2005, 69, 192–199. [Google Scholar] [CrossRef]
- Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Production of mannosylerythritol lipids and their application in cosmetics. Appl. Microbiol. Biotechnol. 2013, 97, 4691–4700. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Wullbrandt, D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999, 51, 22–32. [Google Scholar] [CrossRef]
- Soberon-Chavez, G.; Aguirre-Ramírez, M.; Sanchez, R. The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. J. Ind. Microbiol. Biotechnol. 2005, 32, 675–677. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, U.A.; Fiechter, A.; Reiser, J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 1994, 26, 19787–19795. [Google Scholar]
- Cabrera-Valladares, N.; Richardson, A.P.; Olvera, C.; Treviño, L.G.; Déziel, E.; Lépine, F.; Soberón-Chávez, G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl. Microbiol. Biotechnol. 2006, 73, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rahim, R.; Ochsner, U.A.; Olvera, C.; Graninger, M.; Messner, P.; Lam, J.S.; Soberon-Chavez, G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 2001, 40, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Youssef, N.H.; McInerney, M.J.; Sabatini, D.A. Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res. 2008, 42, 1735–1743. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Sabatini, D.A. Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J. Surfactants Deterg. 2009, 12, 109–115. [Google Scholar] [CrossRef]
- Syldatk, C.; Lang, S.; Wagner, F.; Wray, V.; Witte, L. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z. Für Nat. C 1985, 40, 51–60. [Google Scholar] [CrossRef]
- Kosaric, N.; Cairns, W.L.; Gray, N.C.C. Biosurfactants and Biotechnology; Surfactant Science Series (USA); Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Parra, J.L.; Guinea, J.; Manresa, M.A.; Robert, M.; Mercadé, M.E.; Comelles, F.; Bosch, M.P. Chemical characterization and physicochemical behavior of biosurfactants. J. Am. Oil Chem. Soc. 1989, 66, 141–145. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Ye, R. Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant-rhamnolipid. J. Dispers. Sci. Technol. 2005, 26, 455–461. [Google Scholar] [CrossRef]
- Pornsunthorntawee, O.; Wongpanit, P.; Chavadej, S.; Abe, M.; Rujiravanit, R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol. 2008, 99, 1589–1595. [Google Scholar] [CrossRef]
- Lovaglio, R.B.; dos Santos, F.J.; Jafelicci, J.M.; Contiero, J. Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf. B Biointerfaces 2011, 85, 301–305. [Google Scholar] [CrossRef]
- Scheibenbogen, K.; Zytner, R.G.; Lee, H.; Trevors, J.T. Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 1994, 59, 53–59. [Google Scholar]
- Hirata, Y.; Ryu, M.; Oda, Y.; Igarashi, K.; Nagatsuka, A.; Furuta, T.; Sugiura, M. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low–foaming surfactants. J. Biosci. Bioeng. 2009, 108, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Brusseau, M.L.; Miller, R.M. Biosurfactant–enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol. 1997, 25, 157–170. [Google Scholar] [CrossRef]
- Piljac, T.; Piljac, G. Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics. Patent WO1999043334 A1, 2 September 1999. [Google Scholar]
- Desanto, K. Rhamnolipid-Based Formulations. World Patent WO2008013899A2, 31 January 2008. [Google Scholar]
- Bloomberg, G. Designing proteins as emulsifiers. Lebensmitteltechnologie 1991, 24, 130–131. [Google Scholar]
- Khaje Bafghi, M.; Fazaelipoor, M.H. Application of rhamnolipid in the formulation of a detergent. J. Surfactants Deterg. 2012, 15, 679–684. [Google Scholar] [CrossRef]
- Chrzanowski, Ł.; Dziadas, M.; Ławniczak, Ł.; Cyplik, P.; Białas, W.; Szulc, A.; Lisiecki, P.; Jeleń, H. Biodegradation of rhamnolipids in liquid cultures: Effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresour. Technol. 2012, 111, 328–335. [Google Scholar] [CrossRef]
- Pei, X.; Zhan, X.; Zhou, L. Effect of biosurfactant on the sorption of phenanthrene onto original and H2O2–treated soils. J. Environ. Sci. 2009, 21, 1378–1385. [Google Scholar] [CrossRef]
- Fiebig, R.; Schulze, D.; Chung, J.C.; Lee, S.T. Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 1997, 8, 67–75. [Google Scholar] [CrossRef]
- Poremba, K.; Gunkel, W.; Lang, S.; Wagner, F. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ. Toxicol. Water Qual. 1991, 6, 157–163. [Google Scholar] [CrossRef]
- Schilling, M.; Hartung, C.; Cabirol, F.; Schafer, S.; Alef, P. Mixture Composition Comprising Rhamnolipids. Patent US10292924B2, 21 May 2019. [Google Scholar]
- Siegmund, L.; Philp, J.C. Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 1998, 74, 59–70. [Google Scholar]
- Kurtzman, C.P.; Price, N.P.J.; Ray, K.J.; Kuo, T.M. Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol. Lett. 2010, 311, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, D.A.; Hird, L.C.; Ali, S.T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. Appl. Microbiol. 2013, 115, 744–755. [Google Scholar] [CrossRef]
- Asselineau, C.; Asselineau, J. Trehalose-containing glycolipids. Prog. Chem. Fats Other Lipids 1978, 16, 59–99. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High-and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Franzetti, A.; Gandolfi, I.; Bestetti, G.; Smyth, T.J.P.; Banat, I.M. Production and applications of trehalose lipid biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112, 617–627. [Google Scholar] [CrossRef]
- Azuma, M.; Suzutani, T.; Sazaki, K.; Yoshida, I.; Sakuma, T.; Yoshida, T. Role of interferon in the augmented resistance of trehalose-6, 6′-dimycolate-treated mice to influenza virus infection. J. Gen. Virol. 1987, 68, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Vollbrecht, E.; Rau, U.; Lang, S. Microbial conversion of vegetable oils into surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurellaspec. Lipid/Fett 1999, 101, 389–394. [Google Scholar] [CrossRef]
- Marqués, A.M.; Pinazo, A.; Farfan, M.; Aranda, F.J.; Teruel, J.A.; Ortiz, A.; Manresa, A.; Espuny, M.J. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lipids 2009, 158, 110–117. [Google Scholar] [CrossRef]
- Christova, N.; Lang, S.; Wray, V.; Kaloyanov, K.; Konstantinov, S.; Stoineva, I. Production, Structural Elucidation, and In Vitro Antitumor Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain. J. Microbiol. Biotechnol. 2015, 25, 439. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.R.; Magri, A.; Baldo, C.; Camilios-Neto, D.; Minucelli, T.; Celligoi, M.A.P.C. Sophorolipids a promising biosurfactant and it’ s applications. Int. J. Adv. Biotechnol. Res. 2015, 6, 161–174. [Google Scholar]
- Thanomsub, B.; Watcharachaipong, T.; Chotelersak, K.; Arunrattiyakorn, P.; Nitoda, T.; Kanzaki, H. Monoacylglycerols: Glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J. Appl. Microbiol. 2004, 96, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Z.; Chen, Y.; Du, G.; Chen, J. Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J. Microbiol. Biotechnol. 2004, 20, 25–29. [Google Scholar] [CrossRef]
- Chandran, P.; Das, N. Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int. J. Eng. Sci. Technol. 2010, 2, 6942–6953. [Google Scholar]
- Chandankere, R.; Yao, J.; Cai, M.; Masakorala, K.; Jain, A.K.; Choi, M.M.F. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 2014, 122, 140–148. [Google Scholar] [CrossRef]
- Martinez, V.; Corsini, E.; Mitjans, M.; Pinazo, A.; Vinardell, M.P. Evaluation of eye and skin irritation of arginine-derivative surfactants using different in vitro endpoints as alternatives to the in vivo assays. Toxicol. Lett. 2006, 164, 259–267. [Google Scholar] [CrossRef]
- Cooper, D.G.; Paddock, D.A. Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol. 1983, 46, 1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bogaert, I.N.; Zhang, J.; Soetaert, W. Microbial synthesis of sophorolipids. Process. Biochem. 2011, 46, 821–833. [Google Scholar] [CrossRef]
- De Rienzo, M.A.D.; Banat, I.M.; Dolman, B.; Winterburn, J.; Martin, P.J. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnol. 2015, 32, 720–726. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.B.; Lee, B.S.; Shin, D.H.; Kim, E.K. Characteristics of sophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol. 2002, 12, 235–241. [Google Scholar]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29. J. Antibiot. 1986, 39, 888–901. [Google Scholar] [CrossRef] [Green Version]
- Cox, T.F.; Crawford, R.J.; Gregory, L.G.; Hosking, S.L.; Kotsakis, P. Mild to the skin, foaming detergent composition. U.S. Patent 8,563,490, 22 November 2013. [Google Scholar]
- Kulkarni, S.; Choudhary, P. Production and isolation of biosurfactant-sophorolipid and its application in body wash formulation. Asian J. Microbiol. Biotechnol. Environ. Sci. 2011, 13, 217–221. [Google Scholar]
- Inoue, S. Biosurfactants in cosmetic applications. In Proceedings of the World Conference on Biotechnology for the Fats and Oils Industry; American Oil Chemists’ Society: Champaign, IL, USA, 1988; pp. 206–210. [Google Scholar]
- Brown, M.J. Biosurfactants for cosmetic applications. Int. J. Cosmet. Sci. 1991, 13, 61. [Google Scholar] [CrossRef]
- Marchant, R.; Banat, I.M. Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Casas, J.A.; Ochoa, F.G. Sophorolipid production by Candida bombicola: Medium composition and culture methods. J. Biosci. Bioeng. 1999, 988, 488–494. [Google Scholar] [CrossRef]
- Guilmanov, V.; Ballistreri, A.; Impallomeni, G.; Gross, R.A. Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnol. Bioeng. 2002, 77, 489–494. [Google Scholar] [CrossRef]
- Krishnaswamy, M.; Subbuchettiar, G.; Kochupappy, R.T.; Panchaksharam, S. Biosurfactants: Properties, commercial production and application. Curr. Sci. 2008, 94, 00113891. [Google Scholar]
- Varvaresou, A.; Iakovou, K. Biosurfactants in cosmetics and biopharmaceuticals. Lett. Appl. Microbiol. 2015, 61, 214–223. [Google Scholar] [CrossRef]
- Inès, M.; Dhouha, G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr. Res. 2015, 416, 59–69. [Google Scholar] [CrossRef]
- Lee, Y.J.; Choi, J.K.; Kim, E.K.; Youn, S.H.; Yang, E.J. Field experiments on mitigation of harmful algal blooms using a Sophorolipid Yellow clay mixture and effects on marine plankton. Harmful Algae 2008, 7, 154–162. [Google Scholar] [CrossRef]
- Klosowska-Chomiczewska, I.; Medrzycka, K.; Karpenko, E. Biosurfactants-biodegradability, toxicity, efficiency in comparison with synthetic surfactants. In Proceedings of the Polish-Swedish-Ukrainian Seminar “Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Disposal in Ukraine, Sweden, and Poland”, Krakow, Poland, 17–19 October 2011. [Google Scholar]
- Cavalero, D.A.; Cooper, D.G. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC. J. Biotechnol. 2003, 103, 31–41. [Google Scholar] [CrossRef]
- Peng, S.; Li, Z.; Zou, L.; Liu, W.; Chengmei, O.; David, L.; McClements, J. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid–Coated Nanoparticles: An in Vitro and in Vivo Study. J. Agric. Food Chem. 2018, 66, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Kitagawa, M.; Suzuki, M.; Yamamoto, S.; Sogabe, A.; Yanagidani, S.; Imura, T.; Fukuoka, T.; Kitamoto, D. Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res. 2007, 7, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnol. Appl. Biochem. 2009, 53, 39–49. [Google Scholar] [CrossRef]
- Arutchelvi, J.I.; Bhaduri, S.; Uppara, P.V.; Doble, M. Mannosylerythritol lipids: A review. J. Ind. Microbiol. Biotechnol. 2008, 35, 1559–1570. [Google Scholar] [CrossRef]
- Fukuoka, T.; Morita, T.; Konishi, M.; Imura, T.; Sakai, H.; Kitamoto, D. Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl. Microbiol. Biotechnol. 2007, 76, 801–810. [Google Scholar] [CrossRef]
- Kitamoto, D.; Yanagishita, H.; Shinbo, T.; Nakane, T.; Kamisawa, C.; Nakahara, T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida Antactica. J. Biotechnol. 1993, 29, 91–96. [Google Scholar] [CrossRef]
- Takahashi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts. J. Oleo Sci. 2012, 61, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Schelges, H.; Tretyakova, M. Exfoliant with biosurfactants. Patent GB2544384, 16 March 2017. [Google Scholar]
- Tomotake, M.; Masaru, K.; Michiko, S.; Shuhei, Y.; Atsushi, S.; Shusaku, Y.; Tomohiro, I.; Tokuma, F.; Dai, K. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: The recovery effect of MEL-A on the SDS-damaged human skin cells. J. Oleo Sci. 2009, 58, 639–642. [Google Scholar]
- Shen, L.J.; Zhu, J.; Lu, Q.; Gong, M.; Jin, X. Long Isolation and purification of biosurfactant mannosylerythritol lipids from fermentation broth with methanol/water/n-hexane. Sep. Purif. Technol. 2019, 219, 1–8. [Google Scholar] [CrossRef]
- Morita, T.; Ishibashi, Y.; Fukuoka, T.; Imura, T.; Sakai, H.; Abe, M.; Kitamoto, D. Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci. Biotechnol. Biochem. 2011, 75, 1597–1599. [Google Scholar] [CrossRef]
- Kulakovskaya, T.; Shashkov, A.; Kulakovskaya, E.; Golubev, W.; Zinin, A.; Tsvetkov, Y.; Grachev, A.; Nifantiev, N. Extracellular cellobiose lipid from yeast and their analogues: Structures and fungicidal activities. J. Oleo Sci. 2009, 58, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, B.; Linne, U.; Hewald, S.; Marahiel, M.A.; Bölker, M. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol. Microbiol. 2007, 66, 525–533. [Google Scholar] [CrossRef]
- Fuhrhop, J.H.; Wang, T. Bolaamphiphiles. Chem. Rev. 2004, 104, 2901–2938. [Google Scholar] [CrossRef]
- Hamley, I.W. Lipopeptides: From self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, A. Lipoprotein structure. New Compr. Biochem. 2002, 36, 483–504. [Google Scholar]
- Lukic, M.; Pantelic, I.; Savic, S. An overview of novel surfactants for formulation of cosmetics with certain emphasis on acidic active substances. Tenside Surfactants Deterg. 2016, 53, 7–19. [Google Scholar] [CrossRef]
- Förster, T.H.; Waldmann-Laue, M.; Both, W.; Jassoy, C. Lipoprotein creams: Utilization of multifunctional ingredients for the preparation of cosmetic emulsions with excellent skin compatibility. Int. J. Cosmet. Sci. 1999, 21, 253–264. [Google Scholar] [CrossRef]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruza, J.M.; Moldes, A.B. Adsorption of natural surface active compounds obtained from corn on human hair. RSC Adv. 2016, 6, 63064–63070. [Google Scholar] [CrossRef] [Green Version]
- Hajfarajollah, H.; Mokhtarani, B.; Noghabi, K.A. Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, Propionibacterium freudenreichii. Appl. Biochem. Biotechnol. 2014, 174, 2725–2740. [Google Scholar] [CrossRef]
- Gallot, B.; Douy, A. Lipopeptides, Their Preparation and Their Application as Emulsifiers. U.S. Patent 460,015, 4 July 1986. [Google Scholar]
- Guglielmo, M.; Montanari, D. Cosmetic Preparation with Anti-Wrinkle Action. Patent WO03000222, 9 January 2001. [Google Scholar]
- Montanari, D.; Guglielmo, M. Cosmetic Composition for the Treatment and/or Prevention of Skin Stretch Marks. World Patent 80443, 7 October 2008. [Google Scholar]
- Ogawa, Y.; Kawahara, H.; Yagi, N.; Kodaka, M.; Tomohiro, T.; Okada, T.; Konakahara, T.; Okuno, H. Synthesis of a novel lipopeptide with α-melanocyte-stimulating hormone peptide ligand and its effect on liposome stability. Lipids 1999, 34, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.; Tsuzuki, T.; Ogata, E. Tocopherol Derivative, Ascorbic Acid Derivative and Skin Preparation for External Use Comprising Surfactant Having Lipopeptides Structure. Japanese Patent JP2005336171, 19 April 2005. [Google Scholar]
- Fardis, M.; Cameron, D.R.; Boyd, V.A. Dab9 derivatives of lipopeptide antibiotics and methods of making and using the same. U.S. Patent 712,524, 24 October 2006. [Google Scholar]
- Cameron, D.R.; Boyd, V.A.; Leese, R.A. Compositions of lipopeptides antibiotic derivatives and methods of use thereof. World Patent WO2005000878 A, 1 June 2005. [Google Scholar]
- Hill, J.; Parr, I.; Morytko, M. Lipopeptides as Antibacterial Agents. US Patent 7335725, 26 February 2008. [Google Scholar]
- Alonso, C.; Lucas, R.; Barba, C.; Marti, M.; Rubio, L.; Comelles, F.; Morales, J.C.; Coderch, L.; Parra, J.L. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol. J. Pharm. Pharm. 2015, 67, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.H.; Park, B.K.; Lim, J.H.; Kim, M.S.; Song, I.B.; Park, S.C.; Yun, H.I. Evaluation of genetic and developmental toxicity of surfactin C from Bacillus subtilis BC1212. J. Health Sci. 2008, 54, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.; Mitjans, M.; Infante, M.R.; Vinardell, M.P. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability. Toxicol. Lett. 2006, 161, 53–60. [Google Scholar] [CrossRef]
- Tadashi, Y. Cosmetic composition comprising a and a lipopeptide. World Patent WO2005020950, 26 August 2004. [Google Scholar]
- Chen, W.C.; Juang, R.S.; Wei, Y.H. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem. Eng. J. 2015, 103, 158–169. [Google Scholar] [CrossRef]
- Kumar, M.; León, V.; Materano, A.D.S.; Ilzins, O.A. A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tension-active emulsifying agent. World J. Microbiol. Biotechnol. 2007, 23, 211–220. [Google Scholar] [CrossRef]
- Makkar, R.S.; Cameotra, S.S. Biosurfactant production by a thermophilic Bacillus subtilis strain. J. Ind. Microbiol. Biotechnol. 1997, 18, 37–42. [Google Scholar] [CrossRef]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31, 488–494. [Google Scholar] [CrossRef]
- Haferburg, D.; Hommel, R.; Claus, R.; Kleber, H.P. Extracellular microbial lipids as biosurfactants. In Bioproducts; Springer: Berlin/Heidelberg, Germany, 1986; pp. 53–93. [Google Scholar]
- Coronel León, J.; Presas, M.M.; Marqués Villavecchia, A.M. Lichenysin production and application in the pharmaceutical field. Recent Adv. Pharm. Sci. 2016, 9, 147–163. [Google Scholar]
- Bonmatin, J.M.; Labbé, H.; Grangemard, I.; Peypoux, F.; Maget-Dana, R.; Ptak, M.; Michel, G. Production, isolation and characterization of [Leu 4]-and [Ile 4] surfactins from Bacillus subtilis. Lett. Pept. Sci. 1995, 2, 41–47. [Google Scholar] [CrossRef]
- Tsan, P.; Volpon, L.; Besson, F.; Lancelin, J.M. Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 2007, 129, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Vollenbroich, D.; Pauli, G.; Ozel, M.; Vater, J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 1997, 63, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kracht, M.; Rokos, H.; Özel, M.; Kowall, M.; Pauli, G.; Vater, J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 1999, 52, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, J.D.; Jumarie, C.; Cooper, D.G.; Laprade, R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 1991, 1064, 13–23. [Google Scholar] [CrossRef]
- Heerklotz, H.; Seelig, J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. 2007, 36, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.L.; Juang, R.S. Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochem. Eng. J. 2008, 38, 39–46. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, W.C.; Ho, T.F.; Wu, H.S.; Wei, Y.H. Development of natural anti-tumor drugs by microorganisms. J. Biosci. Bioeng. 2011, 111, 501–511. [Google Scholar] [CrossRef]
- Seydlová, G.; Svobodová, J. Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med. 2008, 3, 123–133. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.Y.; Park, H.J.; Lim, C.R.; Lim, J.H.; Yun, H.I.; Park, S.C.; Kim, S.K.; Rhee, M.H. A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. J. Microbiol. Biotechnol. 2006, 16, 1656–1659. [Google Scholar]
- Wu, Y.S.; Ngai, S.C.; Goh, B.H.; Chan, K.G.; Lee, L.H.; Chuah, L.H. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery. Front. Pharmacol. 2017, 26, 761. [Google Scholar] [CrossRef]
- Mireles, J.R.; Toguchi, A.; Harshey, R.M. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 2001, 183, 5848–5854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, R. Surfactin: Biosynthesis, genetics and potential applications. In Biosurfactants; Advances in Experimental Medicine and Biology Book Series; Spinger: Berlin/Heidelberg, Germany, 2010; Volume 672, pp. 316–323. [Google Scholar]
- Maget–Dana, R.; Thimon, L.; Peypoux, F.; Ptak, M. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 1992, 74, 1047–1051. [Google Scholar] [CrossRef]
- Lai, C.C.; Huang, Y.C.; Wei, Y.H.; Chang, J.S. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 2009, 167, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Whang, L.M.; Liu, P.W.G.; Ma, C.C.; Cheng, S.S. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 2008, 151, 155–163. [Google Scholar] [CrossRef]
- Debois, D.; Fernandez, O.; Franzil, L.; Jourdan, E.; de Brogniez, A.; Willems, L.; Clément, C.; Dorey, S.; De Pauw, E.; Ongena, M. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ. Microbiol. Rep. 2015, 7, 570–582. [Google Scholar] [CrossRef]
- Razafindralambo, H.; Paquot, M.; Baniel, A.; Popineau, Y.; Hbid, C.; Jacques, P.; Thonart, P. Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J. Am. Oil Chem. Soc. 1996, 73, 149–151. [Google Scholar] [CrossRef]
- Razafindralambo, H.; Paquot, M.; Baniel, A.; Popineau, Y.; Hbid, C.; Jacques, P.; Thonart, P. Foaming properties of a natural cyclic lipoheptapeptide belonging to a special class of amphiphilic molecules. Food Hydrocoll. 1997, 11, 59–62. [Google Scholar] [CrossRef]
- Reddy, A.S.; Chen, C.Y.; Chen, C.C.; Jean, J.S.; Fan, C.W.; Chen, H.R.; Wang, J.C.; Nimje, V.R. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J. Nanosci. Nanotechnol. 2009, 9, 6693. [Google Scholar] [CrossRef]
- Reddy, A.S.; Chen, C.-Y.; Baker, S.C.; Chen, C.-C.; Jean, J.-S.; Fan, C.-W.; Chen, H.R.; Wang, J.C. Synthesis of silver nanoparticles using surfactin: A biosurfactant as stabilizing agent. Mater. Lett. 2009, 63, 1227. [Google Scholar] [CrossRef]
- Singh, B.R.; Dwivedi, S.; Al-Khedhairy, A.A.; Musarrat, J. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf. B Biointerfaces 2011, 85, 207. [Google Scholar] [CrossRef]
- Krishnan, N.; Velramar, B.; Pandiyan, R.; Velu, R.K. Anti-pseudomonal and anti-endotoxic effects of surfactin-stabilized biogenic silver nanocubes ameliorated wound repair in streptozotocin induced diabetic mice. Artif. Cells Nanomed. Biotechnol. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-H.; Kim, M.-S.; Song, I.-B.; Park, B.-K.; Lim, J.-H.; Park, S.-C.; Yun, H.I. Subacute (28 day) toxicity of Surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J. Health Sci. 2009, 55, 351. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.; Gudina, E.J.; Lima, C.F.; Rodrigues, L.R. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB. Express 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Zhia, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant T surfactin by Bacillus subtilis. Metab. Eng. 2019, 52, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Maget-Dana, R.; Peypoux, F. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 1994, 87, 151–174. [Google Scholar] [CrossRef]
- Peypoux, F.; Guinand, M.; Michel, G.; Delcambe, L.; Das, B.C.; Varenne, P.; Lederer, E. Isolement de l’acide 3-amino 12-methyl tetradecanoique et de l’acide 3-amino 12-methyl tridecanoique a partir de l’iturine, antibiotique de Bacillus subtilis. Tetrahedron 1973, 29, 3455–3459. [Google Scholar] [CrossRef]
- Lichtenberg, D.; Robson, R.J.; Dennis, E.A. Solubilization of phospholipids by detergents structural and kinetic aspects. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1983, 737, 285–304. [Google Scholar] [CrossRef]
- Nitschke, M.; Pastore, G.M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97, 336–341. [Google Scholar] [CrossRef]
- Besson, F.; Peypoux, F.; Michel, G.; Delcambe, L. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiot. 1976, 29, 1043–1049. [Google Scholar] [CrossRef]
- Singh, P.; Cameotra, S.S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 2004, 22, 142–146. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, F.; Liu, X.; Fan, X.; Huang, R.; Gao, W.; Wang, S.; Yang, C. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact. 2019, 18. [Google Scholar] [CrossRef] [PubMed]
- Steller, S.; Vollenbroich, D.; Leenders, F.; Stein, T.; Conrad, B.; Hofemeister, J.; Jacques, P.; Thonart, P.; Vater, J. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem. Biol. 1999, 6, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Taraz, K.; Budzikiewicz, H.; Deleu, M.; Thonart, P.; Jacques, P. The structure of two fengycins from Bacillus subtilis S499. Zeitschrift für Naturforschung 1999, 54, 859–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonmatin, J.M.; Laprévote, O.; Peypoux, F. Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High. Throughput Screen. 2003, 6, 541–556. [Google Scholar] [CrossRef]
- Lang, S. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Interface Sci. 2002, 7, 12–20. [Google Scholar] [CrossRef]
- Meena, K.R.; Dhima, R. Applications of Lipopeptide (s) from a Bacillus sp.: An Overview. Res. J. Recent Sci. 2016, 5, 50–54. [Google Scholar]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Guo, Q.; Dong, L.; Wang, P.; Li, S.; Zhao, W.; Lu, X.; Zhang, X.; Ma, P.J. The PhoR/PhoP two-component system regulates fengycin production in Bacillus subtilis NCD-2 under low-phosphate conditions. J. Integr. Agric. 2018, 17, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Ke, W.; Liu, S. Inactivation of phoR or phoP genes has been shown to significantly decrease fengycin production. J. Microbiol. Immunol. Infect. 2017, 50, 755. [Google Scholar] [CrossRef] [Green Version]
- Neu, T.R.; Poralla, K. Emulsifying agents from bacteria isolated during screening for cells with hydrophobic surfaces. Appl. Microbiol. Biotechnol. 1990, 32, 521–525. [Google Scholar] [CrossRef]
- Kochi, M.; Weiss, D.W.; Pugh, L.H.; Groupé, V. Viscosin, a new antibiotic. Bacteriol. Proc. 1951, 1, 29–30. [Google Scholar]
- Groupé, V.; Pugh, L.H.; Weiss, D.; Kochi, M. Observations on antiviral activity of viscosin. Proc. Soc. Exp. Biol. Med. 1951, 78, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Bourinbaiar, A.S.; Coleman, C.F. The effect of gramicidin, a topical contraceptive and antimicrobial agent with anti-HIV activity, against herpes simplex viruses type 1 and 2 in vitro. Arch. Virol. 1997, 142, 2225–2235. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, S.N. Structural and molecular characteristics of lichenysin and its relationship with surface activity. In Biosurfactants; Advances in Experimental Medicine and Biology Book Series; Spinger Nature: Cham, Switzerland, 2010; Volume 672, pp. 304–315. [Google Scholar]
- Saini, H.S.; Barragán-Huerta, B.E.; Lebrón-Paler, A.; Pemberton, J.E.; Vázquez, R.R.; Burns, A.M.; Marron, M.T.; Seliga, C.J.; Gunatilaka, A.A.L.; Maier, R.M. Efficient Purification of the Biosurfactant Viscosin from Pseudomonas libanensis Strain M9-3 and Its Physicochemical and Biological Properties. J. Nat. Prod. 2008, 71, 1011–1015. [Google Scholar] [CrossRef]
- McInerney, M.J.; Javaheri, M.; Nagle, D.P. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J. Ind. Microbiol. 1990, 5, 95–101. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Timmis, K.N.; Wray, V.; Fredrickson, H.L. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Grangemard, I.; Wallach, J.; Maget-Dana, R.; Peypoux, F. Lichenysin. A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199–210. [Google Scholar] [CrossRef]
- Zhu, C.; Xiao, F.; Qiu, Y.; Wang, Q.; He, Z.; Chen, S. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Appl. Microbiol. Biotechnol. 2017, 101, 6375. [Google Scholar] [CrossRef]
- Burkhart, B.M.; Gassman, R.M.; Langs, D.A.; Pangborn, W.A.; Duax, W.L.; Pletnev, V. Gramicidin D conformation, dynamics and membrane ion transport. Pept. Sci. 1999, 51, 129–144. [Google Scholar] [CrossRef]
- Krauss, E.M.; Sunney, I.C. Complexation and phase transfer on nucleotides by gramicidin S. Biochemistry 1983, 22, 4280–4291. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, G.C.; Brown, A.M.; Brownlee, G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature 1947, 160, 263. [Google Scholar] [CrossRef] [PubMed]
- Satlin, M.J.; Jenkins, S.G. Polymyxins. In Infectious Diseases, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1285–1288. [Google Scholar]
- Brownlee, G.; Bushby, S.R.M.; Short, E.I. The chemotherapy and pharmacology of the polymyxins. Br. J. Pharmacol. Chemother. 1952, 7, 170–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins revisited. Clin. Microbiol. Rev. 2008, 21, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Hayashi, K.; Fujikawa, K.; Tsukamoto, K. The chemical structure of polymyxin E: The identities of polymyxin E1 with colistin A and of polymyxin E2 with colistin B. J. Biochem. 1965, 57, 226–227. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug–resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.A.; Fesik, S.W.; McGroarty, E.J. Decreased binding of antibiotics to lipopolysaccharides from polymyxin-resistant strains of Escherichia coli and Salmonella typhimurium. Antimicrob. Agents Chemother. 1987, 31, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 1982, 35, 1454–1459. [Google Scholar] [CrossRef] [Green Version]
- Takayama, S.; Yamanaka, S.; Miyashiro, S.; Yokokawa, Y.; Shibai, H. Novel Macrocyclic Antibiotics: Megovalicins, A.; B.; C.; D.; G. and H. J. Antibiot. 1988, 41, 433–438. [Google Scholar] [CrossRef]
- Onishi, N.; Izaki, K.; Takahashi, H. A macrocyclic antibiotic M–230B produced by Myxococcus xanthus. J. Antibiot. 1984, 37, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, E.; Vaks, B.; Zuckerberg, A. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob. Agents Chemother. 1973, 4, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Gerth, K.; Müller, R.; Wall, D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob. Agents Chemother. 2012, 56, 2014–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, R.; Singh, S.K.; Kaur, R.; Kumari, A.; Kaur, R. Myxococcus xanthus: A source of antimicrobials and natural bio-control agent. Pharma Innov. J. 2017, 6, 260–262. [Google Scholar]
- Rosenberg, E.; Porter, J.M.; Nathan, P.N.; Manor, A.; Varon, M. Antibiotic TA: An adherent antibiotic. Bio/Technol. 1984, 2, 796–799. [Google Scholar] [CrossRef]
- Eli, I.; Judes, H.; Varon, M.; Manor, A.; Rosenberg, E. Antibiotic TA––a new adherent agent for the treatment of periodontal disease. Refu’at Ha-Shinayim 1998, 6, 14–15. [Google Scholar]
- Manor, A.; Eli, I.; Varon, M.; Judes, H.; Rosenberg, E. Effect of adhesive antibiotic TA on plaque and gingivitis in man. J. Clin. Periodontol. 1989, 16, 621–624. [Google Scholar] [CrossRef]
- Schierholz, J.M.; Beuth, J. Implant infections: A haven for opportunistic bacteria. J. Hosp. Infect. 2001, 49, 87–93. [Google Scholar] [CrossRef]
- Simhi, E.; van der Mei, H.C.; Ron, E.Z.; Rosenberg, E.; Busscher, H.J. Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber. FEMS Microbiol. Lett. 2000, 192, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, M.C.; Carman, G.M. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Zajic, J.; Seffens, E.W.; Panchal, C. Biosurfactants. Crit. Rev. Biotechnol. 1983, 1, 87–107. [Google Scholar] [CrossRef]
- Shaw, N. Lipid composition as a guide to the classification of bacteria. In Advances in Applied Microbiology; Academic Press Elsevier: Amsterdam, The Netherlands, 1974; Volume 17, pp. 63–108. [Google Scholar]
- Asselinean, J. The Bacterial Lipids; Holden-Day Inc.: San Francisco, CA, USA, 1966; p. 190. [Google Scholar]
- Kates, M. Techniques of lipidology; isolation, analysis and identification of lipids. Lab. Tech. Biochem. Mol. Biol. 1972, 3, 347–353. [Google Scholar]
- Cooper, D.G.; Zajic, J.E. Surface-active compounds from microorganisms. In Advances in Applied Microbiology; Academic Press Elsevier: Amsterdam, The Netherlands, 1980; Volume 26, pp. 229–253. [Google Scholar]
- Macdonald, C.R.; Cooper, D.G.; Zajic, J.E. Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 1981, 41, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiuru, P.; DʼAuria, M.V.; Muller, C.D.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds. Planta Med. 2014, 80, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guo, Z.K.; Li, X.M.; Chen, F.X.; Zhan, X.F.; Shen, M.H. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity. Antonie Van Leeuwenhoek 2015, 108, 215–219. [Google Scholar] [CrossRef]
- Tabuchi, T.; Nakamura, I.; Kobayashi, T. Accumulation of the open-ring acid of spiculisporic acid by Penicillium spiculisporum in shake culture. J. Ferment. Technol. 1977, 55, 37. [Google Scholar]
- Tabuchi, T.; Nakamura, I.; Kobayashi, T. Factors affecting the production of the open-ring acid of spiculisporic acid by Penicillium spiculisporum. J. Ferment. Technol. 1977, 55, 43–49. [Google Scholar]
- Ishigami, Y.; Yamazaki, S.; Gama, Y. Surface active properties of biosoap from spiculisporic acid. J. Colloid Interface Sci. 1983, 94, 131–139. [Google Scholar] [CrossRef]
- Wellner, N.; Diep, T.A.; Janfelt, C.; Hansen, H.S. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2013, 1831, 652–662. [Google Scholar] [CrossRef]
- Käppeli, O.; Finnerty, W.R. Partition of alkane by an extracellular vesicle derived from hexadecane–grown Acinetobacter. J. Bacteriol. 1979, 140, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Casem, M.L. Case Studies in Cell Biology; Academic Press Elsevier: Amsterdam, The Netherlands, 2016; Volume 7, pp. 157–192. [Google Scholar]
- Van Oss, C.J. Phagocytic Engulfment and Cell Adhesiveness as Cellular Surface Phenomena; Marcel Dekker: New York, NY, USA, 1975; ISBN 0824762843. [Google Scholar]
- Neufeld, R.J.; Zajic, J.E.; Gerson, D.F. Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl. Environ. Microbiol. 1980, 39, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufeld, R.J.; Zajic, J.E. The surface activity of Acinetobacter calcoaceticus sp. 2cabiotechnology. Bioengineering 1984, 26, 1108–1113. [Google Scholar]
- Zuckerberg, A.; Diver, A.; Peeri, Z.; Gutnick, D.L.; Rosenberg, E. Emulsifier of Arthrobacter RAG-1: Chemical and physical properties. Appl. Environ. Microbiol. 1979, 37, 414–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belsky, I.; Gutnick, D.L.; Rosenberg, E. Emulsifier of Arthrobacter RAG-1: Determination of emulsifier-bound fatty acids. FEBS Lett. 1979, 101, 175–178. [Google Scholar] [PubMed] [Green Version]
- Rosenberg, E. Surface-Active properties of Acinetobacter exopolysaccharides. In Bacterial Outer Membranes as Model Systems; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Zosim, Z.; Gutnick, D.; Rosenberg, E. Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol. Bioeng. 1982, 24, 281–292. [Google Scholar] [CrossRef]
- Pines, O.; Gutnick, D.L. Relationship between phage resistance and emulsan production, interaction of phages with the cell-surface of Acinetobacter calcoaceticus. RAG Arch. Microbiol. 1981, 130, 129–133. [Google Scholar] [CrossRef]
- Kaplan, N.; Rosenberg, E. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 1982, 44, 1335–1341. [Google Scholar] [CrossRef] [Green Version]
- Gautam, K.K.; Tyagi, V.K. Microbial surfactants: A review. J. Oleo Sci. 2006, 55, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Emulsan-based nanoparticles for in vivo drug delivery to tumors. Biochem. Biophys. Res. Commun. 2019, 508, 326–331. [Google Scholar] [CrossRef]
- Chakrabarti, S. Bacterial Biosurfactant: Characterization, Antimicrobial and Metal Remediation Properties. Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2012. [Google Scholar]
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J.; Rahman, P.K.S.M. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 245. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, E.; Ron, E.Z. Bioemulsans: Surface-active Polysaccharide-containing Complexes. Biopolym. Online Biol. Chem. Biotechnol. Appl. 2005, 5. [Google Scholar] [CrossRef]
- Rosenberg, E.; Rubinovitz, C.; Gottlieb, A.; Rosenhak, S.; Ron, E.Z. Production of biodispersan by Acinetobacter calcoaceticus A2. Appl. Environ. Microbiol. 1988, 54, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, E.; Rubinovitz, C.; Legmann, R.; Ron, E.Z. Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ. Microbiol. 1988, 54, 323–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants: Minireview. Environ. Microbiol 2001, 3, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.R.; Teixeira, J.A.; van der Mei, H.C.; Oliveira, R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces 2006, 49, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Gudiña, E.J.; Fernandes, E.C.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and anti-adhesive activities of cell–bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015, 5, 90960–90968. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, N.; Zosim, Z.; Rosenberg, E. Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl. Environ. Microbiol. 1987, 53, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Alcantara, V.A.; Pajares, I.G.; Simbahan, J.F.; Edding, S.N. Downstream recovery and purification of a bioemulsifier from Sacchromyces cerevisiae 2031. Phil. Agric. Sci. 2014, 96, 349–359. [Google Scholar]
- Jagtap, S.; Yavankar, S.; Pardesi, K.; Chopade, B. Production of bioemulsifier by Acinetobacter sp. from healthy human skin of tribal population. Ind. J. Expt. Biol. 2010, 48, 70–76. [Google Scholar]
- Ballou, C. Structure and biosynthesis of the mannan component of the yeast cell envelope. In Advances in Microbial Physiology; Academic Press: New York, NY, USA, 1976; Volume 14, pp. 93–158. [Google Scholar]
- Cabib, E.; Roberts, R.; Bowers, B. Synthesis of the yeast cell wall and its regulation. Annu. Rev. Biochem. 1982, 51, 763–793. [Google Scholar] [CrossRef]
- Torabizadeh, H.; Shojaosadati, S.A.; Tehrani, H.A. Preparation and characterisation of bioemulsifier from Saccharomyces cerevisiae and its application in food products. LWT Food Sci. Technol. 1996, 29, 734–737. [Google Scholar] [CrossRef]
- Barriga, J.A.T.; Cooper, D.G.; Idziak, E.S.; Cameron, D.R. Components of the bioemulsifier from S. cerevisiae. Enzym. Microb. Technol. 1999, 25, 96–102. [Google Scholar] [CrossRef]
- Dikit, P.; Maneerat, S.; Musikasang, H.; Kittikun, A.H. Emulsifier properties of the mannoprotein extract from yeast isolated from sugar palm wine. Sci. Asia 2010, 36, 312–318. [Google Scholar] [CrossRef]
- Casanova, M.; Lopez-Ribot, J.L.; Martinez, J.P.; Sentandreu, R. Characterization of cell wall proteins from yeast and mycelial cells of Candida albicans by labelling with biotin: Comparison with other techniques. Infect. Immun. 1992, 60, 4898–4906. [Google Scholar] [CrossRef] [Green Version]
- Haque, F.; Sajid, M.; Cameotra, S.S.; Battacharyya, M.S. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling 2017, 33, 768. [Google Scholar] [CrossRef]
- Rincón–Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Design and characterization of greener sunscreen formulations based on mica powder and a biosurfactant extract. Powder Technol. 2018, 327, 442–448. [Google Scholar] [CrossRef]
- Franco-Marcelino, P.R.; Gonçalves, F.; Muñoz Jimenez, I.; Curry Carneiro, B.; Bosquiroli Santos, B.; Silvério da Silva, S. Sustainable Production of Biosurfactants and Their Applications. Lignocellul. Biorefining Technol. 2020. [Google Scholar] [CrossRef]
Biosurfactant | Main Producing Strains | Properties/Activities | Structure | Toxicity |
---|---|---|---|---|
Rhamnolipids | Pseudomonas aeroginosa | Anionic Hydrophilic Surface active agents Surface activity unaltered over pH conditions ranging from 5 to 10 [55,56] | Glycosides composed of rhamnose moieties and 3-(hydroxyalkanoyloxy) alkanoic fatty acid tail attached via a glycosidic linkage [46,47]. | Low toxicity profile (safe) [67] |
Trehalose Lipids | Rhodococcus erythropolis Actinomycetales | Surface active agents Resistant to a broad range of conditions (pH and temperature) [71]. | Trehalose disaccharide linked to mycolic acids [34] | Low toxicity profile Less irritating to skin than SDS (safe) [77] |
Sophorlipids | Candida spp. | Surface active agents Amphiphilic surfactants [83]. | Sophorose disaccharide linked to a fatty acid long chain [81]. | Easy biodegradable Low toxicity profile (safe) [58] |
Mannosylerythritol Lipids | Pseudozyma antaractica | Surface active agents with low CMC [107] Antifungal activity [108] Antioxidant activity [42] | Hydrophilic moiety 4-O-β-D mannopyranosyl-erythritol or 1-O-β-D-mannopyranosyl- erythritol linked to fatty acid chain [1,104] | Low toxicity profile Safe to human skin and eye [27] |
Cellobiolipids | Pseudozymafusiformata Cryptococcus humicola Sclerotinia sclerotiorum Phomopsis helianthi Ustilago maydis | Surface active agents [116] Antifungal activity [114] | Group of Glycolipids that comprehend a cellobiose moiety as the hydrophilic moiety [113] | n. r. |
Biosurfactant | Producing strain | Properties/Activities | Structure | Toxicity |
---|---|---|---|---|
Surfactin | Bacillus subtilis | Surface-active agent with low CMC. [74] Stability to temperature and broad pH condictions [136,137] Antiadhesive properties [148] Anti-inflammatory activity [149,150] Antiviral activity [144] Antibacterial activity [149] Anticancer activity [151] Good candidates of nanoformulation as an active or as stabilizing agent. [151] | Lipopeptide composed of a seven amino acid moiety attached to the carboxyl and hydroxy groups on long-chain fatty acids (C13 to C15) [135] | NOAEL is 500 mg/kg. At high dose (1000–2000 mg/kg) it causes necrosis of hepatocytes [164] |
Iturin | Bacillus subtilis | Surface-active agent Stability to temperature and broad pH conditions [120,170] Antifungal activity [171] Antibacterial activity [172] | Lipopeptide containing seven α amino acid residues closed through a lactam ring attached to a fatty acid moiety [167] | Low toxicity and low allergenic effects (lytic activity on human erythrocyte is reported) [179] |
Fengycin | Bacillus subtilis | Surface-active agent [177] Antifungal activity [81] | Cyclic lipodecapeptide containing ß hydroxy fatty acid with a chain length of 16–19 carbon atoms [174] | Modest Hemolytic activity is reported [179] |
Viscosin | Pseudomonas viscosa | Surface-active agent [182] Antimycobacterial [183]. Antiviral activity [184] | Hydroxydecanoic acid attached to a peptide of nine amino acids, seven of which form a lactone ring [177] | n. r. |
Lichenysin | Bacillus licheniformis | Anionic surfactant [140]. Stability to temperature and broad pH conditions [187] Antimicrobial activity [140] Anti-inflammatory activity [190] Antitumor activity [190] | Peptide moiety composed of seven amino acids attached to a β-hydroxy fatty acid of 12–17 carbon atoms [140]. | n. r. |
Gramicidin | Bacillus brevis | Surface-active agent [197] Antimicrobial activity [192] | Mixture of three compounds named gramicidin A, B and C, making up 80%, 6%, and 14%, respectively [192] | n. r. |
Polymyxins | Bacillus polymyxa | Surface-active agent [195] Antimicrobial activity [195] | Cationic polypeptide structure consisting of five different compounds (polymyxin A–E) [195,196] | n. r. |
Antibiotic TA (Megovalicin) | Myxobacteria | Antiadhesive/antibiotic activity [205] Rapid bactericidal [205] High adhesive properties toward abiotic material [207,208,209,210,211] | Macrocyclic structure consisting of a 28-membered lactone ring [206] | No toxicity toward protozoa, eukaryotic cells, fungi, rodents and humans [207] |
Biosurfactant | Producing Strain | Properties/Activities | Structure | Toxicity |
---|---|---|---|---|
Corynomycolic Acids | Nocardia erythropolis and Corynebacterium lepus | Surfactant activity, emulsifying agents [73,218] Stability to broad pH conditions [73] | Fatty acids containing hydroxyl groups and alkyl branches [73] | n.r. |
Spiculisporic Acid | Aspergillus spp HDf2 and Penicillium spiculisporum | Surfactant activity, good CMC values [223] | 4,5-dicarboxy-4-pentadecanolide [219] | n.r. |
Phosphatidylethanolamines | Acinetobacter spp HO1-N | Vesicles-forming emulsifying agents [224,225] | 1,2-diacyl-sn-glycero-3-phosphoethanolamine [224,225] | n.r. |
Biosurfactant. | Producing Strain | Properties | Structure | Toxicity |
---|---|---|---|---|
Emulsan | Acinetobacter calcoaceticus | Emulsifying agent [238] | Anionic, D-galactosamine-containing, polysaccharide backbone presenting fatty acid side chains and a non-covalently bound protein [231,232] | n.r. |
Liposan | Candida lipolytica | Water soluble emulsifying agent [240] | Complex of a proteic moiety and a heteropolysaccharide portion composed of galactose, galactosamine, glucose and galacturonic acid [5] | n.r. |
Alasan | Acineto radioresistens | Anionic emulsifying agent [241,242]. | Anionic complex of polysaccharides, alanine and proteins [241] | n.r. |
Biodispersan | Acinetobacter calcoaceticus | Nondialyzable dispersing agent [243] | Anionic heteropolysaccharide [244] | n.r. |
Polysaccharide Protein Complex | Lactococcus lactis | Emulsifying activity [246] Antimicrobial activity [246] Antiadhesive activity [248] | Complex of protein and polysaccharides containing phosphate groups [248] | n.r. |
Mannoproteins | Saccharomyces cervisiae | Emulsifying agent [249,251] | Amphiphilic glycoproteins. Protein moiety attached to a polymeric carbohydrate fraction (mannopyranose) [241,249,250] | n.r. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi-Ashtiani, H.-R.; Baldisserotto, A.; Cesa, E.; Manfredini, S.; Sedghi Zadeh, H.; Ghafori Gorab, M.; Khanahmadi, M.; Zakizadeh, S.; Buso, P.; Vertuani, S. Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics. Cosmetics 2020, 7, 46. https://doi.org/10.3390/cosmetics7020046
Ahmadi-Ashtiani H-R, Baldisserotto A, Cesa E, Manfredini S, Sedghi Zadeh H, Ghafori Gorab M, Khanahmadi M, Zakizadeh S, Buso P, Vertuani S. Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics. Cosmetics. 2020; 7(2):46. https://doi.org/10.3390/cosmetics7020046
Chicago/Turabian StyleAhmadi-Ashtiani, Hamid-Reza, Anna Baldisserotto, Elena Cesa, Stefano Manfredini, Hossein Sedghi Zadeh, Mostafa Ghafori Gorab, Maryam Khanahmadi, Samin Zakizadeh, Piergiacomo Buso, and Silvia Vertuani. 2020. "Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics" Cosmetics 7, no. 2: 46. https://doi.org/10.3390/cosmetics7020046
APA StyleAhmadi-Ashtiani, H. -R., Baldisserotto, A., Cesa, E., Manfredini, S., Sedghi Zadeh, H., Ghafori Gorab, M., Khanahmadi, M., Zakizadeh, S., Buso, P., & Vertuani, S. (2020). Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics. Cosmetics, 7(2), 46. https://doi.org/10.3390/cosmetics7020046