The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review
Abstract
:1. Introduction
2. Evidence Acquisition
3. Findings
4. Discussion
5. Future Tasks
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S.; Fukunaga, T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age 2014, 36, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Thiebaud, R.S.; Abe, T. Estimating site-specific muscle loss: A valuable tool for early sarcopenia detection? Rejuvenation Res. 2014, 17, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Lovell, C.R.; Smolenski, K.A.; Duance, V.C.; Light, N.D.; Young, S.; Dyson, M. Type I and III collagen content and fibre distribution in normal human skin during ageing. Br. J. Dermatol. 1987, 117, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.; Trujillo, O.; Kristen, Q.; Isac, K.; Zorko, J.; Fam, M.; Okonkwo, K.; Mian, A.; Thanh, H.; Koban, K.; et al. The facial adipose tissue: A revision. Facial Plast. Surg. 2016, 32, 671–682. [Google Scholar] [CrossRef]
- Sahni, D.; Sanjeev; Singh, G.; Jit, I.; Singh, P. Facial soft tissue thickness in northwest Indian adults. Forensic Sci. Int. 2008, 176, 137–146. [Google Scholar] [CrossRef]
- Drgacova, A.; Dupej, J.; Veleminska, J. Facial soft tissue thickness in the present Czech population. Forensic Sci. Int. 2016, 260, 106.e1–106.e7. [Google Scholar] [CrossRef]
- Ezure, T.; Amano, S. Influence of subcutaneous adipose tissue mass on dermal elasticity and sagging severity in lower cheek. Skin Res. Technol. 2010, 16, 332–338. [Google Scholar] [CrossRef]
- Calleja-Agius, J.; Brincat, M.; Borg, M. Skin connective tissue and ageing. Best Pract. Res. Clin. Obstet. Gynaecol. 2013, 27, 727–740. [Google Scholar] [CrossRef]
- Lemperle, G.; Holmes, R.E.; Cohen, S.R.; Lemperle, S.M. A classification of facial wrinkles. Plast. Reconstr. Surg. 2001, 108, 1735–1750. [Google Scholar] [CrossRef]
- Van Borsel, J.; De Vos, M.C.; Bastiaansen, K.; Welvaert, J.; Lambert, J. The effectiveness of facial exercise for facial rejuvenation: A systematic review. Aesthet. Surg. J. 2014, 34, 22–27. [Google Scholar] [CrossRef]
- Litner, J.A.; Rotenberg, B.W.; Dennis, M.; Adamson, P.A. Impact of cosmetic facial surgery on satisfaction with appearance and quality of life. Arch. Facial Plast. Surg. 2008, 10, 79–83. [Google Scholar] [CrossRef]
- Small, R. Aesthetic procedures in office practice. Am. Fam. Physician 2009, 80, 1231–1237. [Google Scholar]
- Kavanagh, S.; Newell, J.; Hennessy, M.; Sadick, N. Use of a neuromuscular electrical stimulation device for facial muscle toning: A randomized, controlled trial. J. Cosmet. Dermatol. 2012, 11, 261–266. [Google Scholar] [CrossRef]
- Kim, K.; Jeon, S.; Kim, J.K.; Hwang, J.S. Effects of Kyunghee Facial Resistance Program (KFRP) on mechanical and elastic properties of skin. J. Dermatol. Treat. 2016, 27, 191–196. [Google Scholar] [CrossRef]
- Safi, M.F.; Wright-Harp, W.; Lucker, J.R.; Payne, J.C. Effect of surface neuromuscular electrical stimulation on labial and lingual muscles in healthy volunteers. Int. J. Rehabil. Res. 2017, 40, 119–126. [Google Scholar] [CrossRef]
- Hwang, U.; Kwon, O.; Jung, S.; Ahn, S.; Gwak, G. Effect of a facial muscle exercise device on facial rejuvenation. Aesthet. Surg. J. 2018, 38, 463–476. [Google Scholar] [CrossRef]
- Goodmurphy, C.W.; Ovalle, W.K. Morphological study of two human facial muscles: Orbicularis oculi and corrugator supercilia. Clin. Anat. 1999, 12, 1–11. [Google Scholar] [CrossRef]
- Volk, G.F.; Wystub, N.; Pohlmann, M.; Finkensieper, M.; Chalmers, H.J.; Guntinas-Lichius, O. Quantitative ultrasonography of facial muscles. Muscle Nerve 2013, 47, 878–883. [Google Scholar] [CrossRef]
- Alfen, N.V.; Gilhuis, H.J.; Keijzers, J.P.; Pillen, S.; Van Dijk, J.P. Quantitative facial muscle ultrasound: Feasibility and reproducibility. Muscle Nerve 2013, 48, 375–380. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S.; Loftin, M. Morphological and functional relationships with ultrasound measured muscle thickness of the upper extremity and trunk. Ultrasound 2014, 22, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound 2015, 23, 166–173. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Hansen, J.T. Netter’s Clinical Anatomy, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2014; pp. 436–437. [Google Scholar]
- Pessa, J.E.; Zadoo, V.P.; Garza, P.A.; Adrian, E.K., Jr.; Dewitt, A.I.; Garza, J.R. Double or bifid zygomaticus major muscle: Anatomy, incidence, and clinical correlation. Clin. Anat. 1998, 11, 310–313. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Dankel, S.J.; Bell, Z.W.; Buckner, S.L.; Mattocks, K.T.; Jessee, M.B.; Abe, T. Is muscle growth a mechanism for increasing strength? Med. Hypotheses 2019, 125, 51–56. [Google Scholar] [CrossRef]
Keywords | Number of Hits |
---|---|
“Facial Exercise” and “Rejuvenation” | 5 |
“Facial Exercise” and “Muscle” | 186 |
“Facial Exercise” and “Skin” | 55 |
“Facial Exercise” and “Aging” | 76 |
Total | 322 |
Author Year [ref #] | Study Design Participants | Training Condition | Outcome Assessment | Study Results |
---|---|---|---|---|
● Modality | ||||
● Duration | ||||
● Frequency | ||||
● Time/Repetitions | ||||
● Intensity | ||||
Kavanagh et al. 2012 [12] | Experimental group MW (n = 56) Control group MW (n = 52) | NMES | Ultrasound MT (Zygomatic major) Psychometric data | NMES group MT (mm): Pre 1.56 → 12 week 1.85 Control group MT (mm): Pre 1.61 → 12 week 1.56 |
12 weeks | ||||
5 days/week | ||||
20 min | ||||
Unknown | ||||
Kim et al. 2016 [13] | Experimental group MW (n = 16) | Isometric exercise | Skin elasticity (4 facial regions) | Skin elastic property increased Ability to return to the original position improved Viscoelastic property unchanged |
8 weeks | ||||
2x/day, 7 days/week | ||||
~10 s, 3 sets | ||||
RPE 16 | ||||
Safi et al. 2017 [14] | Experimental group YMWM (n = 8) Control group YMWM (n = 6) | NMES + Oral motor Ex | IOPI strength (labial and lingual placements) | There were no significant differences in IOPI strength between the 2 groups |
4 weeks | ||||
3 days/week | ||||
30 min (5 s on/25 s off) | ||||
Max tolerance level | ||||
Hwang et al. 2018 [15] | Experimental group MW (n = 50) | Oscillatory movement | Ultrasound MT/CSA (Zygomatic major, Digastric, Levator labii superioris, Orbicularis oris) Facial anthropometry Wrinkle/jawline sagging scales | Zygomatic major (right side) CSA (cm2): pre 0.772 → 8 week 0.822 Levator labii superioris (right side) MT (mm): pre 1.26 → 8 week 1.36 Orbicularis oris (right side) MT (mm): pre 2.27 → 8 week 2.35 Midfacial surface distance decreased Facial visual scale improved |
8 weeks | ||||
2x/day, ~6 days/week | ||||
30 s | ||||
Unknow |
Authors [Ref #] | Number of Subjects | Posture of Testing | Testing Interval | Measured Muscle | Reliability | ||
---|---|---|---|---|---|---|---|
ICC | SEM | MD | |||||
Volk et al. [19] | N = 3 | 7 days | Orbicularis oculi (Right) | 0.40 | – | – | |
Orbicularis oculi (Left) | 0.59 | – | – | ||||
Orbicularis oris (R) | 0.45 | – | – | ||||
Orbicularis oris (L) | 0.54 | – | – | ||||
Depressor anguli oris (R) | 0.68 | – | – | ||||
Depressor anguli oris (L) | 0.66 | – | – | ||||
Depressor labii inferioris (R) | 0.72 | – | – | ||||
Depressor labii inferioris (L) | 0.33 | – | – | ||||
Frontalis (R) | 0.44 | – | – | ||||
Frontalis (L) | 0.55 | – | – | ||||
Mentalis (R) | 0.93 | – | – | ||||
Mentalis (L) | 0.73 | – | – | ||||
Alfen et al. [20] | N = 12 | Supine | 7 days | Zygomaticus major | 0.71 | – | – |
Levator labii superioris | 0.86 | – | – | ||||
Depressor anguli oris | 0.73 | – | – | ||||
Orbicularis oris (pars labialis) | 0.35 | – | – | ||||
Orbicularis oris (pars marginalis) | 0.63 | – | – | ||||
Procerus | 0.87 | – | – | ||||
Mentalis | 0.55 | – | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, T.; Loenneke, J.P. The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review. Cosmetics 2019, 6, 50. https://doi.org/10.3390/cosmetics6030050
Abe T, Loenneke JP. The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review. Cosmetics. 2019; 6(3):50. https://doi.org/10.3390/cosmetics6030050
Chicago/Turabian StyleAbe, Takashi, and Jeremy P. Loenneke. 2019. "The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review" Cosmetics 6, no. 3: 50. https://doi.org/10.3390/cosmetics6030050
APA StyleAbe, T., & Loenneke, J. P. (2019). The Influence of Facial Muscle Training on the Facial Soft Tissue Profile: A Brief Review. Cosmetics, 6(3), 50. https://doi.org/10.3390/cosmetics6030050