Vitachelox: Protection of the Skin Against Blue Light-Induced Protein Carbonylation
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Protein Carbonylation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wanger, F.A.; Carels, C.E.; Lundvig, D.M. Targeting the redox balance in inflammatory skin conditions. Int. J. Mol. Sci. 2013, 14, 9126–9167. [Google Scholar]
- Godic, A.; Polisak, B.; Adamic, M.; Dahmane, R. The role of antioxidants in skin cancer prevention and treatment. Oxid. Med. Cell. Longev. 2014, 2014, 860479. [Google Scholar] [CrossRef] [PubMed]
- Chevion, M.; Berenshtein, E.; Stadtman, E.R. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic. Res. 2000, 33, S99–S108. [Google Scholar] [PubMed]
- Kobayashi, Y.; Iwai, I.; Akutsu, N.; Hirao, T. Increased carbonyl protein levels in the stratum corneum of the face during winter. Int. J. Cosmet. Sci. 2008, 30, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, T.; Sumida, H.; Sagawa, Y.; Okano, Y.; Masaki, H. Carbonylated proteins exposed to UVA and to blue light generate reactive oxygen species through a type I photosensitizing reaction. J. Dermatol. Sci. 2016, 84, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Negre-Salvayre, A.; Coatrieux, C.; Ingueneau, C.; Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol. 2008, 153, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, I.; Shimadzu, K.; Kobayashi, Y.; Hirao, T.; Etou, T. Increased carbonyl protein level in the stratum corneum of inflammatory skin disorders: A non-invasive approach. J. Dermatol. 2010, 37, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Podhaisky, H.P.; Riemschneider, S.; Wohlrab, W. UV light and oxidative damage of the skin. Pharmazie 2002, 57, 30–33. [Google Scholar]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue light-induced oxidative stress in live skin. Free Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, L.; Togni, S.; Meneghin, M.; Roberto, E.; Giada, M. In vivo validation of the multi-component powder (Vitachelox®) against the deposition of polluting ions. Clin. Cosmet. Investig. Dermatol. 2018, 11, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Vayalil, P.K.; Mittal, A.; Hara, Y.; Elmets, C.A.; Katiyar, S.K. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J. Investig. Dermatol. 2004, 122, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.; Geraldo, V.P.N.; Antunes, A.; Marletta, A.; Oliveira Jr, O.N.; Raposo, M. Effect of blue light irradiation on the stability of phospholipid molecules in the presence of epigallocatechin-3-gallate. Colloids Surf. B Biointerfaces 2019, 177, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Andrensek, S.; Simonovska, B.; Vovk, I.; Fyhrquist, P.; Vuorela, H.; Vuorela, P. Antimicrobial and antioxidative enrichment of oak (Quercus robur) bark by rotation planar extraction using ExtraChrom®. Int. J. Food Microbiol. 2004, 92, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, M.A.; Ladouce, R.; Friguet, B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J. Proteom. 2013, 92, 63–70. [Google Scholar] [CrossRef]
- Rasband, W.S. Image JUS National Institutes of Health, Bethesda, MD, USA, 1997–2018. Available online: http://imagej.nih.gov/ij/ (accessed on 7 August 2019).
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248. [Google Scholar] [CrossRef]
- Maramaldi, G.; Corti, A.; Togni, S.; Meneghin, M.; Nobile, V.; Giacomelli, L.; Katinka, J. Antioxidant action and microflora modulation of Vitachelox® in subjects with acne-prone skin. Esper. Dermatol. 2019, 21, 16–21. [Google Scholar]
Parameter | Value |
---|---|
Wavelength | 460 nm |
Source | LED |
Irradiance | 53 mW/cm2 |
Dose | 35 J/cm2 |
Irradiation time | 11 min |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Togni, S.; Maramaldi, G.; Cavagnino, A.; Corti, A.; Giacomelli, L. Vitachelox: Protection of the Skin Against Blue Light-Induced Protein Carbonylation. Cosmetics 2019, 6, 49. https://doi.org/10.3390/cosmetics6030049
Togni S, Maramaldi G, Cavagnino A, Corti A, Giacomelli L. Vitachelox: Protection of the Skin Against Blue Light-Induced Protein Carbonylation. Cosmetics. 2019; 6(3):49. https://doi.org/10.3390/cosmetics6030049
Chicago/Turabian StyleTogni, Stefano, Giada Maramaldi, Andrea Cavagnino, Ambra Corti, and Luca Giacomelli. 2019. "Vitachelox: Protection of the Skin Against Blue Light-Induced Protein Carbonylation" Cosmetics 6, no. 3: 49. https://doi.org/10.3390/cosmetics6030049
APA StyleTogni, S., Maramaldi, G., Cavagnino, A., Corti, A., & Giacomelli, L. (2019). Vitachelox: Protection of the Skin Against Blue Light-Induced Protein Carbonylation. Cosmetics, 6(3), 49. https://doi.org/10.3390/cosmetics6030049