1064 nm Q-Switched Fractional Laser for Transcutaneous Delivery of a Biostimulator: Efficacy and Safety Outcomes of a Split-Face Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv. 2014, 11, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv. 2006, 13, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Sivamani, R.K.; Liepmann, D.; Maibach, H.I. Microneedles and transdermal applications. Expert Opin. Drug Deliv. 2007, 4, 19–25. [Google Scholar] [CrossRef]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Labadie, J.G.; Ibrahim, S.A.; Worley, B.; Kang, B.Y.; Rakita, U.; Rigali, S.; Arndt, K.A.; Bernstein, E.; Brauer, J.A.; Chandra, S.; et al. Evidence-Based Clinical Practice Guidelines for Laser-Assisted Drug Delivery. JAMA Dermatol. 2022, 158, 1193–1201. [Google Scholar] [CrossRef]
- Manstein, D.; Herron, G.S.; Sink, R.K.; Tanner, H.; Anderson, R.R. Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med. 2004, 34, 426–438. [Google Scholar] [CrossRef]
- Ng, W.H.S.; Smith, S.D. Laser-Assisted Drug Delivery: A Systematic Review of Safety and Adverse Events. Pharmaceutics 2022, 14, 2738. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Yue, Y.; Luo, Q.; Zhu, D. 1064 nm-Nd:YAG lasers with different output modes enhancing transdermal delivery: Physical and physiological mechanisms. J. Biomed. Opt. 2013, 18, 61228. [Google Scholar] [CrossRef]
- Haedersdal, M.; Erlendsson, A.M.; Paasch, U.; Anderson, R.R. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery: A critical review from basics to current clinical status. J. Am. Acad. Dermatol. 2016, 74, 981–1004. [Google Scholar] [CrossRef] [PubMed]
- Waibel, J.S.; Rudnick, A.; Nousari, C.; Bhanusali, D.G. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study. J. Drugs Dermatol. 2016, 15, 14–21. [Google Scholar] [PubMed]
- Sklar, L.R.; Burnett, C.T.; Waibel, J.S.; Moy, R.L.; Ozog, D.M. Laser assisted drug delivery: A review of an evolving technology. Lasers Surg. Med. 2014, 46, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Aljuffali, I.A.; Fang, J.-Y. Lasers as an approach for promoting drug delivery via skin. Expert Opin. Drug Deliv. 2014, 11, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Wenande, E.; Anderson, R.R.; Haedersdal, M. Fundamentals of fractional laser-assisted drug delivery: An in-depth guide to experimental methodology and data interpretation. Adv. Drug Deliv. Rev. 2020, 153, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Haedersdal, M.; Sakamoto, F.H.; Farinelli, W.A.; Doukas, A.G.; Tam, J.; Anderson, R.R. Fractional CO(2) laser-assisted drug delivery. Lasers Surg. Med. 2010, 42, 113–122. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Favaro, J.; Loureiro, V.B. Fractional Non-ablative Laser and Drug Delivery. In Drug Delivery in Dermatology: Fundamental and Practical Applications; Kalil, C.L.P.V., Campos, V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–82. [Google Scholar] [CrossRef]
- Taudorf, E.H.; Haak, C.S.; Erlendsson, A.M.; Philipsen, P.A.; Anderson, R.R.; Paasch, U.; Haedersdal, M. Fractional ablative erbium YAG laser: Histological characterization of relationships between laser settings and micropore dimensions. Lasers Surg. Med. 2014, 46, 281–289. [Google Scholar] [CrossRef]
- Lim, H.K.; Jeong, K.H.; Kim, N.I.; Shin, M.K. Nonablative fractional laser as a tool to facilitate skin penetration of 5-aminolaevulinic acid with minimal skin disruption: A preliminary study. Br. J. Dermatol. 2014, 170, 1336–1340. [Google Scholar] [CrossRef]
- Kalil, C.; Campos, V.B.; Reinehr, C.P.H.; Chaves, C.R.P. Laser toning and drug delivery: A pilot study using laser Q-switched laser 1064nm. Surg. Cosmet. Dermatol. 2016, 8. Available online: https://api.semanticscholar.org/CorpusID:113503096 (accessed on 10 November 2023). [CrossRef]
- Park, S.J.; Park, J.W.; Seo, S.J.; Park, K.Y. Evaluating the tolerance and efficacy of laser-assisted delivery of tranexamic acid, niacinamide, and kojic acid for melasma: A single center, prospective, split-face trial. Dermatol. Ther. 2022, 35, e15287. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Kim, D.H.; Kim, H.K.; Li, K.; Seo, S.J.; Hong, C.K. A randomized, observer-blinded, comparison of combined 1064-nm Q-switched neodymium-doped yttrium-aluminium-garnet laser plus 30% glycolic acid peel vs. laser monotherapy to treat melasma. Clin. Exp. Dermatol. 2011, 36, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.I.; Shin, M.K.; Jeong, K.-H.; Suh, D.H.; Lee, S.J.; Oh, I.-H.; Lee, M.-H. A randomised comparative study of 1064 nm Neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and topical antifungal treatment of onychomycosis. Mycoses 2016, 59, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Oyetakin-White, P.; Suggs, A.; Koo, B.; Matsui, M.S.; Yarosh, D.; Cooper, K.D.; Baron, E.D. Does poor sleep quality affect skin ageing? Clin. Exp. Dermatol. 2015, 40, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Wong, Q.Y.A.; Chew, F.T. Defining skin aging and its risk factors: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 22075. [Google Scholar] [CrossRef] [PubMed]
- Nijsten, T.E.C.; Sampogna, F.; Chren, M.-M.; Abeni, D.D. Testing and reducing skindex-29 using Rasch analysis: Skindex-17. J. Investig. Dermatol. 2006, 126, 1244–1250. [Google Scholar] [CrossRef]
- Chren, M.M.; Lasek, R.J.; Quinn, L.M.; Mostow, E.N.; Zyzanski, S.J. Skindex, a quality-of-life measure for patients with skin disease: Reliability, validity, and responsiveness. J. Investig. Dermatol. 1996, 107, 707–713. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Statistics for Windows 25.0 IBM Corp. (n.d.). IBM SPSS Statistics for Windows, Version 25.0; IBM: Armonk, NY, USA, 2007; p. 335. [Google Scholar]
- Zaleski-Larsen, L.A.; Fabi, S.G. Laser-Assisted Drug Delivery. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2016, 42, 919–931. [Google Scholar] [CrossRef]
- Alegre-Sánchez, A.; Jiménez-Gómez, N.; Boixeda, P. Laser-Assisted Drug Delivery. Actas Dermosifiliogr. 2018, 109, 858–867. [Google Scholar] [CrossRef]
- Zhao, Y.; Voyer, J.; Li, Y.; Kang, X.; Chen, X. Laser microporation facilitates topical drug delivery: A comprehensive review about preclinical development and clinical application. Expert Opin. Drug Deliv. 2023, 20, 31–54. [Google Scholar] [CrossRef]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. Lessons Learned from the First Decade of Laser-Assisted Drug Delivery. Dermatol. Ther. 2021, 11, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; He, H. A review of cosmetic skin delivery. J. Cosmet. Dermatol. 2021, 20, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Hsu, T.-S.; Dover, J.S.; Wrone, D.A.; Arndt, K.A. Nonablative laser and light treatments: Histology and tissue effects—A review. Lasers Surg. Med. 2003, 33, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.; Weiss, M.A.; Weiss, R.A. Short-term histologic effects of nonablative resurfacing: Results with a dynamically cooled millisecond-domain 1320 nm Nd:YAG laser. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2002, 28, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, E.L.; Alster, T.S. Comparison of a 1450-nm diode laser and a 1320-nm Nd:YAG laser in the treatment of atrophic facial scars: A prospective clinical and histologic study. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2004, 30, 152–157. [Google Scholar] [CrossRef]
- De Filippis, A.; Perfetto, B.; Guerrera, L.P.; Oliviero, G.; Baroni, A. Q-switched 1064 nm Nd-Yag nanosecond laser effects on skin barrier function and on molecular rejuvenation markers in keratinocyte-fibroblasts interaction. Lasers Med. Sci. 2019, 34, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Duan, X.; Wang, X.; Xu, Q.; Guo, B.; Xiang, S.; Jia, X.; He, L. The effect of Q-switched 1064-nm Nd: YAG laser on skin barrier and collagen synthesis via miR-663a to regulate TGFβ1/smad3/p38MAPK pathway. Photodermatol. Photoimmunol. Photomed. 2021, 37, 412–421. [Google Scholar] [CrossRef]
- Ifrach, H. Non-ablative laser treatment improves lip volume, texture, and color. J. Cosmet. Laser Ther. Off. Publ. Eur. Soc. Laser Dermatol. 2022, 24, 98–102. [Google Scholar] [CrossRef]
- Goldberg, D.J.; Silapunt, S. Histologic evaluation of a Q-switched Nd:YAG laser in the nonablative treatment of wrinkles. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2001, 27, 744–746. [Google Scholar] [CrossRef]
- Dang, Y.; Ye, X.; Weng, Y.; Tong, Z.; Ren, Q. Effects of the 532-nm and 1,064-nm Q-switched Nd:YAG lasers on collagen turnover of cultured human skin fibroblasts: A comparative study. Lasers Med. Sci. 2010, 25, 719–726. [Google Scholar] [CrossRef]
- Watchmaker, L.E.; Watchmaker, J.D.; Callaghan, D.; Arndt, K.A.; Dover, J.S. The Unhappy Cosmetic Patient: Lessons From Unfavorable Online Reviews of Minimally and Noninvasive Cosmetic Procedures. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2020, 46, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.; Maisel, A.; Weil, A.; Iyengar, S.; Sacotte, K.; Lazaroff, J.M.; Kurumety, S.; Shaunfield, S.L.; Reynolds, K.A.; Poon, E.; et al. Patients believe that cosmetic procedures affect their quality of life: An interview study of patient-reported motivations. J. Am. Acad. Dermatol. 2019, 80, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.; Humphreys, T.R. LASER-tissue interactions. Clin. Dermatol. 2006, 24, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Aust, M.C.; Knobloch, K.; Reimers, K.; Redeker, J.; Ipaktchi, R.; Altintas, M.A.; Gohritz, A.; Schwaiger, N.; Vogt, P.M. Percutaneous collagen induction therapy: An alternative treatment for burn scars. Burns 2010, 36, 836–843. [Google Scholar] [CrossRef]
- Šuca, H.; Zajíček, R.; Vodsloň, Z. Microneedling—A form of collagen induction therapy—Our first experiences. Acta Chir. Plast. 2017, 59, 33–36. [Google Scholar]
- Moftah, N.H.; El Khayyat, M.A.M.; Ragai, M.H.; Alaa, H. Carboxytherapy Versus Skin Microneedling in Treatment of Atrophic Postacne Scars: A Comparative Clinical, Histopathological, and Histometrical Study. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2018, 44, 1332–1341. [Google Scholar] [CrossRef]
% | m (SD) | |
---|---|---|
Age | 44.87 (7.73) | |
Female sex | 100 | |
BMI | 21.58 (3.86) | |
Smoking habit Yes | 66.7 | |
Insomnia Yes | 55.6 |
Mean | SD | ||
---|---|---|---|
1 | Skin Hydration baseline | 59.56 | 8.71 |
Skin Hydration Laser + Drug 3-week FU | 67.30 | 5.45 | |
2 | Skin Elasticity baseline | 66.10 | 13.51 |
Skin Elasticity Laser + Drug 3-week FU | 67.10 | 8.59 | |
3 | Skin Hydration Laser + Drug 3-week FU | 67.30 | 5.45 |
Skin Hydration Only Laser 3-week FU | 59.60 | 7.47 | |
4 | Skin Elasticity Laser + Drug 3-week FU | 67.10 | 8.59 |
Skin Elasticity Laser 3-week FU | 65.20 | 7.84 |
Means | SD | 95% L.C.I. (df9) | 95% U.C.I. (df9) | p | |
---|---|---|---|---|---|
Skin Hydration baseline vs. Skin Hydration Laser + Drug 3-week FU | −7.740 | 4.201 | −10.745 | −4.734 | <0.001 |
Skin Elasticity baseline vs. Skin Elasticity Laser + Drug 3-week FU | −1.000 | 11.175 | −8.994 | 6.994 | 0.784 |
Skin Hydration Laser + Drug 3-week FU vs. Skin Hydration Only Laser 3-week FU | 7.700 | 4.667 | 4.360 | 11.039 | <0.001 |
Skin Elasticity Laser + Drug 3-week FU vs. Skin Elasticity Laser 3-week FU | 1.900 | 2.846 | −0.135 | 3.935 | 0.064 |
m (SD) | |
---|---|
Physical domain | 10.00 (12.472) |
Psychosocial domain | 0.417 (1.318) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moro, F.; Camela, E.; Samela, T.; Pirrotta, L.; Pupa, M.B.; Zingoni, T.; Fusco, I.; Colonna, L. 1064 nm Q-Switched Fractional Laser for Transcutaneous Delivery of a Biostimulator: Efficacy and Safety Outcomes of a Split-Face Study. Cosmetics 2024, 11, 14. https://doi.org/10.3390/cosmetics11010014
Moro F, Camela E, Samela T, Pirrotta L, Pupa MB, Zingoni T, Fusco I, Colonna L. 1064 nm Q-Switched Fractional Laser for Transcutaneous Delivery of a Biostimulator: Efficacy and Safety Outcomes of a Split-Face Study. Cosmetics. 2024; 11(1):14. https://doi.org/10.3390/cosmetics11010014
Chicago/Turabian StyleMoro, Francesco, Elisa Camela, Tonia Samela, Lia Pirrotta, Maria Beatrice Pupa, Tiziano Zingoni, Irene Fusco, and Laura Colonna. 2024. "1064 nm Q-Switched Fractional Laser for Transcutaneous Delivery of a Biostimulator: Efficacy and Safety Outcomes of a Split-Face Study" Cosmetics 11, no. 1: 14. https://doi.org/10.3390/cosmetics11010014
APA StyleMoro, F., Camela, E., Samela, T., Pirrotta, L., Pupa, M. B., Zingoni, T., Fusco, I., & Colonna, L. (2024). 1064 nm Q-Switched Fractional Laser for Transcutaneous Delivery of a Biostimulator: Efficacy and Safety Outcomes of a Split-Face Study. Cosmetics, 11(1), 14. https://doi.org/10.3390/cosmetics11010014