Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Subsection
4. Discussion
4.1. Avène Thermal Spring Water
4.2. Blue Lagoon Thermal Water
4.3. Comano Thermal Spring Water
4.4. Cró Thermal Spring Water
4.5. Dead Sea Thermal Water
4.6. La Roche-Posay Thermal Spring Water
4.7. Monfortinho Thermal Water
4.8. Saint-Gervais Mont Blanc Thermal Spring Water
4.9. Salies-de-Béarn Thermal Spring Water
4.10. São Pedro do Sul Thermal Water
4.11. Uriage Thernal Spring Water
4.12. Vichy Thermal Spring Water
5. Incorporation of Thermal Spring Waters in Cosmetic Formulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mourelle, M.L.; Gómez, C.P. Thermal Spring Cosmetics. Applications in the Field of Health and Beauty. In Proceedings of the 1st International Congress on Water Healing SPA and Quality of Life, Ourense, Spain, 23 September 2015; pp. 389–398. [Google Scholar]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Dermothermal Cosmetics: Added Value for Thermal Centers. In Proceedings of the 1st International Congress on Water Healing SPA and Quality of Life, Ourense, Spain, 23 September 2015; pp. 1–7. [Google Scholar]
- Araujo, A.R.T.S.; Rodrigues, M.; Ribeiro, M.P.; Coutinho, P. Thermal Cosmetics as Therapeutic Adjuvant for Dermatological Disorders. Glob. J. Pharm. Pharm. Sci. 2017, 3, 3–5. [Google Scholar] [CrossRef]
- Nunes, S.; Tamura, B.M. Revisão Histórica Das Águas Termais. Surg. Cosmet. Dermatol. 2012, 4, 252–258. [Google Scholar]
- Hern, A.; Iii, S.C. Introducción y Objetivos En Hidrología Médica; Agencia de Evaluación de Tecnologías Sanitarias Instituto de Salud Carlos III—Ministerio de Sanidad y Consumo: Madrid, Spain, 2006; ISBN 8495463334. [Google Scholar]
- Dreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Joly, F.; Charveron, M.; Ariès, M.F.; Bidault, J.; Kahhak, L.; Beauvais, F.; Gall, Y. Effect of Avène Spring Water on the Activation of Rat Mast Cell by Substance P or Antigen. Ski. Pharm. Physiol 1998, 11, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Portalès, P.; Ariès, M.-F.; Licu, D.; Pinton, J.; Hernandez-Pion, C.; Gall, Y.; Dupuy, P.; Charveron, M.; Clot, J. Immunomodulation Induced by Avène Spring Water on Th1- and Th2-Dependent Cytokine Production in Healthy Subjects and Atopic Dermatitis Patients. Ski. Pharmacol. Physiol. 2001, 14, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Boisnic, S.; Branchet-Gumila, M.C.; Segard, C. Inhibitory Effect of Avene Spring Water on Vasoactive Intestinal Peptide-Induced Inflammation in Surviving Human Skin. Int. J. Tissue React. 2001, 23, 89–95. [Google Scholar] [PubMed]
- Castex-Rizzi, N.; Charveron, M.; Merial-Kieny, C. Inhibition of TNF-Alpha Induced-Adhesion Molecules by Avène Thermal Spring Water in Human Endothelial Cells. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Zöller, N.; Valesky, E.; Hofmann, M.; Bereiter-Hahn, J.; Bernd, A.; Kaufmann, R.; Meissner, M.; Kippenberger, S. Impact of Different Spa Waters on Inflammation Parameters in Human Keratinocyte HaCaT Cells. Ann. Derm. 2015, 27, 709. [Google Scholar] [CrossRef]
- Dechelette, C.; Belaubre, F.; Julie, S.; Charveron, M. Avène Thermal Spring Water Enhances Normal Human Keratinocyte Differentiation. In Proceedings of the Poster at 21st World Congress of Dermatology, Buenos Aires, Argentina, 30 September–5 October 2007. [Google Scholar]
- Charveron, M.; Baudoin, C.; Ariès, M.; Gall, Y. In Vitro Evaluation of the Avène Spring Water Effect on Oxygen Radical Generations. In Proceedings of the Poster at 20th World Congress of Dermatology, Paris, France, 1–5 July 2002. [Google Scholar]
- Goldman, M.P.; Merial-Kieny, C.; Nocera, T.; Mery, S. Comparative Benefit of Two Thermal Spring Waters after Photodynamic Therapy Procedure. J. Cosmet. Dermatol. 2007, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Barolet, D.; Lussier, I.; Mery, S.; Merial-Kieny, C. Beneficial Effects of Spraying Low Mineral Content Thermal Spring Water after Fractional Photothermolysis in Patients with Dermal Melasma. J. Cosmet. Dermatol. 2009, 8, 114–118. [Google Scholar] [CrossRef]
- Casas, C.; Ribet, V.; Alvarez-Georges, S.; Sibaud, V.; Guerrero, D.; Schmitt, A.-M.; Redoulès, D. Modulation of Interleukin-8 and Staphylococcal Flora by Avène Hydrotherapy in Patients Suffering from Chronic Inflammatory Dermatoses. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 19–23. [Google Scholar] [CrossRef]
- Mias, C.; Maret, A.; Gontier, E.; Carrasco, C.; Satge, C.; Bessou-Touya, S.; Coubetergues, H.; Bennett-Kennett, R.; Dauskardt, R.H.; Duplan, H. Protective Properties of Avène Thermal Spring Water on Biomechanical, Ultrastructural and Clinical Parameters of Human Skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 15–20. [Google Scholar] [CrossRef]
- Deleuran, M.; Georgescu, V.; Jean-Decoster, C. An Emollient Containing Aquaphilus Dolomiae Extract Is Effective in the Management of Xerosis and Pruritus: An International, Real-World Study. Dermatol. Ther. 2020, 10, 1013–1029. [Google Scholar] [CrossRef] [PubMed]
- Vendrely, V.; Mayor-Ibarguren, A.; Stennevin, A.; Ortiz-Brugués, A. An Emollient PLUS Balm Is Useful for the Management of Xerosis in Patients Treated for Cancer: A Real-World, Prospective, Observational, Multicenter Study. Dermatol. Ther. 2022, 12, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Sigurgeirsson, B.; Ólafsson, J.H.; Fridriksson, T.; Agnarsson, B.A.; Davíðsson, S.; Valdimarsson, H.; Lúðvíksson, B.R. The Role of Th17/Tc17 Peripheral Blood T Cells in Psoriasis and Their Positive Therapeutic Response. Scand. J. Immunol. 2013, 78, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Ólafsson, J.H.; Agnarsson, B.A.; Lúðvíksson, B.R.; Sigurgeirsson, B. Psoriasis Treatment: Faster and Long-Standing Results after Bathing in Geothermal Seawater. A Randomized Trial of Three UVB Phototherapy Regimens. Photodermatol. Photoimmunol. Photomed. 2014, 30, 25–34. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Mühlberg, K.; Brenden, H.; Felsner, I.; Brynjólfsdóttir, Á.; Einarsson, S.; Krutmann, J. Bioactive Molecules from the Blue Lagoon: In Vitro and In Vivo Assessment of Silica Mud and Microalgae Extracts for Their Effects on Skin Barrier Function and Prevention of Skin Ageing. Exp. Dermatol. 2008, 17, 771–779. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Brynjolfsdottir, A.; Olafsdottir, E.S.; Hardardottir, I.; Freysdottir, J. Exopolysaccharides from Cyanobacterium Aponinum Induce a Regulatory Dendritic Cell Phenotype and Inhibit SYK and CLEC7A Expression in Dendritic Cells, T Cells and Keratinocytes. Int. Immunopharmacol. 2019, 69, 328–336. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Omarsdottir, S.; Brynjolfsdottir, A.; Paulsen, B.S.; Olafsdottir, E.S.; Freysdottir, J. Exopolysaccharides from Cyanobacterium Aponinum from the Blue Lagoon in Iceland Increase IL-10 Secretion by Human Dendritic Cells and Their Ability to Reduce the IL-17+RORγt+/IL-10+FoxP3+ Ratio in CD4+ T Cells. Immunol. Lett. 2015, 163, 157–162. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Brenden, H.; Felsner, I.; Aue, N.; Brynjolfsdottir, A.; Krutmann, J. Blue Lagoon Algae Improve Uneven Skin Pigmentation: Results from in Vitro Studies and from a Monocentric, Randomized, Double-Blind, Vehicle-Controlled, Split-Face Study. Ski. Pharmacol. Physiol. 2022, 35, 77–86. [Google Scholar] [CrossRef]
- Nicoletti, G.; Saler, M.; Pellegatta, T.; Tresoldi, M.; Bonfanti, V.; Malovini, A.; Faga, A.; Riva, F. Ex Vivo Regenerative Effects of a Spring Water. Biomed. Rep. 2017, 7, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with Interleukin-6 Production and Secretion and with Cytokeratin-16 Expression by Cultured Human Psoriatic Keratinocytes: Further Potential Mechanisms of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2006, 18, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Menapace, L.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with the Expression and Secretion of Vascular Endothelial Growth Factor-A Protein Isoforms by Cultured Human Psoriatic Keratinocytes: A Potential Mechanism of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2006, 18, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Dal Pra, I.; Chiarini, A.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) Thermal Water Interferes with Tumour Necrosis Factor-α Expression and Interleukin-8 Production and Secretion by Cultured Human Psoriatic Keratinocytes: Yet Other Mechanisms of Its Anti-Psoriatic Action. Int. J. Mol. Med. 2007, 19, 373–379. [Google Scholar] [CrossRef]
- Faga, A. Effects of Thermal Water on Skin Regeneration. Int. J. Mol. Med. 2012, 29, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Saler, M.; Tresoldi, M.M.; Faga, A.; Benedet, M.; Cristofolini, M. Regenerative Effects of Spring Water-Derived Bacterial Lysates on Human Skin Fibroblast in in Vitro Culture: Preliminary Results. J. Int. Med. Res. 2019, 47, 5777–5786. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.; Rodrigues, M.; Ribeiro, M.P.; Ugazio, E.; Cavalli, R.; Abollino, O.; Coutinho, P.; Araujo, A.R.T.S. Incorporation of Cró Thermal Water in a Dermocosmetic Formulation: Cytotoxicity Effects, Characterization and Stability Studies and Efficacy Evaluation. Int. J. Cosmet. Sci. 2019, 41, 604–612. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Oron, M.; Cohen, D.; Ma’or, Z. Antipollution Skin Protection—A New Paradigm and Its Demonstration on Two Active Compounds. Clin. Cosmet. Investig. Dermatol. 2017, 10, 185–193. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Oron, M.; Merrik, E.; Ma’or, Z.; Ben-Amitai, D.; Yogev, H.; Zvulunov, A. A Dead Sea Water-Enriched Body Cream Improves Skin Severity Scores in Children with Atopic Dermatitis. J. Cosmet. Dermatol. Sci. Appl. 2011, 1, 71–78. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Soroka, Y.; Ma’or, Z.; Oron, M.; Zioni, T.; Brégégère, F.M.; Neuman, R.; Kohen, R.; Milner, Y. Protective Effects of a Cream Containing Dead Sea Minerals against UVB-Induced Stress in Human Skin. Exp. Dermatol. 2009, 18, 781–788. [Google Scholar] [CrossRef]
- Moysan, A.; Morlière, P.; Marquis, I.; Richard, A.; Dubertret, L. Effects of Selenium on UVA-Lnduced Lipid Peroxidation in Cultured Human Skin Fibroblasts. Ski. Pharmacol. Physiol. 1995, 8, 139–148. [Google Scholar] [CrossRef]
- Celerier, P.; Litoux, P.; Dreno, B.; Richard, A. Modulatory Effects of Selenium and Strontium Salts on Keratinocyte-Derived Inflammatory Cytokines. Arch. Dermatol. Res. 1995, 287, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Rougier, A.; Richard, A. A Selenium-Rich Spring Water Prevents UV and Chemically Induced Inflammation. J. Am. Acad. Dermatol. 2012, 66, AB68. [Google Scholar]
- Richard, M.J.; Guiraud, P.; Arnaud, J. Antioxidizing Power of a Selenious Mineral Water upon Cutaneous Diploid Human Fibroblasts. Nouv Derm. 1990, 9, 1–7. [Google Scholar]
- Rougier, A.; Richard, A.; Roguet, R. Preventative Effect of a Selenium-Rich Thermal Water against Cell Damage Induced by UV Light. In Proceedings of the Presented at Congress of the International Federation Societies of Cosmetic Chemists, Montreux, Switzerland, 18 September 1995. [Google Scholar]
- Rougier, A.; Richard, A. Preventing Effect of a Selenium-Rich Thermal Water on UV and Chemically Induced Dermatitis. In Proceedings of the Congress of the International Federation Societies of Cosmetic Chemists, Montreux, Switzerland, 18 September 1995. [Google Scholar]
- Seite, S. Thermal Waters as Cosmeceuticals: La Roche-Posay Thermal Spring Water Example. Clin. Cosmet. Investig. Dermatol. 2013, 6, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Cadi, R.; Béani, J.C.; Belanger, S. Protective Effect of a Selenium-Rich Thermal Water on UVB Induced Skin Carcinogenesis. Nouv Derm. 1991, 10, 266–272. [Google Scholar]
- Almeida, C.; Madeira, A.; Marto, J.; Graça, A.; Pinto, P.; Ribeiro, H. Monfortinho Thermal Water-Based Creams: Effects on Skin Hydration, Psoriasis, and Eczema in Adults. Cosmetics 2019, 6, 56. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Vaz, C.V.; Silva, A.; Correia, S.; Ferreira, R.; Breitenfeld, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R.; Pereira, C.; Cruz, M.T.; et al. In Vitro Evaluation of Potential Benefits of a Silica-Rich Thermal Water (Monfortinho Thermal Water) in Hyperkeratotic Skin Conditions. Int. J. Biometeorol. 2020, 64, 1957–1968. [Google Scholar] [CrossRef]
- Ferreira, M.O.; Costa, P.C.; Bahia, M.F. Effect of São Pedro Do Sul Thermal Water on Skin Irritation. Int. J. Cosmet. Sci. 2010, 32, 205–210. [Google Scholar] [CrossRef]
- Chebassier, N.; Ouijja, E.H.; Viegas, I.; Dreno, B. Stimulatory Effect of Boron and Manganese Salts on Keratinocyte Migration. Acta Derm. Venereol. 2004, 84, 191–194. [Google Scholar] [CrossRef]
- Léauté-Labrèze, C.; Saillour, F.; Chêne, G.; Cazenave, C.; Luxey-Bellocq, M.L.; Sanciaume, C.; Toussaint, J.F.; Taïeb, A. Saline Spa Water or Combined Water and UV-B for Psoriasis vs Conventional UV-B: Lessons from the Salies de Béarn Randomized Study. Arch Dermatol. 2001, 137, 1035–1039. [Google Scholar] [PubMed]
- Verdy, C.; Branka, J.-E.; Lefeuvre, L. Modulation of Sodium-Dependent Transporters Expression in Normal Human Keratinocytes by a Sodium Rich Isotonic Thermal Water. J. Cosmet. Dermatol. Sci. Appl. 2012, 2, 254–262. [Google Scholar] [CrossRef]
- Joly, F.; Branka, J.-E.; Lefeuvre, L. Thermal Water from Uriage-Les-Bains Exerts DNA Protection, Induction of Catalase Activity and Claudin-6 Expression on UV Irradiated Human Skin in Addition to Its Own Antioxidant Properties. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 99–106. [Google Scholar] [CrossRef]
- Joly, F.; Gardille, C.; Barbieux, E.; Lefeuvre, L. Beneficial Effect of a Thermal Spring Water on the Skin Barrier Recovery after Injury: Evidence for Claudin-6 Expression in Human Skin. J. Cosmet. Dermatol. Sci. Appl. 2012, 2, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Gannesen, A.v.; Borrel, V.; Lefeuvre, L.; Netrusov, A.I.; Plakunov, V.K.; Feuilloley, M.G.J. Effect of Two Cosmetic Compounds on the Growth, Biofilm Formation Activity, and Surface Properties of Acneic Strains of Cutibacterium acnes and Staphylococcus aureus. Microbiologyopen 2019, 8, e00659. [Google Scholar] [CrossRef]
- Borrel, V.; Thomas, P.; Catovic, C.; Racine, P.-J.; Konto-Ghiorghi, Y.; Lefeuvre, L.; Duclairoir-Poc, C.; Zouboulis, C.C.; Feuilloley, M.G.J. Acne and Stress: Impact of Catecholamines on Cutibacterium Acnes. Front. Med. 2019, 6, 155. [Google Scholar] [CrossRef] [PubMed]
- Tacheau, C.; Weisgerber, F.; Fagot, D.; Bastien, P.; Verdier, M.P.; Liboutet, M.; Sore, G.; Bernard, B.A. Vichy Thermal Spring Water (VTSW), a Cosmetic Ingredient of Potential Interest in the Frame of Skin Ageing Exposome: An in Vitro Study. Int. J. Cosmet. Sci. 2018, 40, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Gueniche, A.; Valois, A.; Kerob, D.; Rasmont, V.; Nielsen, M. A Combination of Vitreoscilla Filiformis Extract and Vichy Volcanic Mineralizing Water Strengthens the Skin Defenses and Skin Barrier. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 16–25. [Google Scholar] [CrossRef]
- Gueniche, A.; Valois, A.; Salomao Calixto, L.; Sanchez Hevia, O.; Labatut, F.; Kerob, D.; Nielsen, M. A Dermocosmetic Formulation Containing Vichy Volcanic Mineralizing Water, Vitreoscilla Filiformis Extract, Niacinamide, Hyaluronic Acid, and Vitamin E Regenerates and Repairs Acutely Stressed Skin. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ólafsson, J. The Blue Lagoon in Iceland and Psoriasis. Clin. Dermatol. 1996, 14, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Ólafsson, J.H.; Sigurgeirsson, B.; Pálsdóttir, R. The Effect Bathing in a Thermal Lagoon in Iceland Has on Psoriasis. A Preliminary Study. J. Eur. Acad. Dermatol. Venereol. 1994, 3, 460–464. [Google Scholar] [CrossRef]
- Ólafsson, J.H.; Sigurgeirsson, B.; Pálsdóttir, R. Psoriasis Treatment: Bathing in a Thermal Lagoon Combined with UVB, versus UVB Treatment Only. Acta Derm Venereol 1996, 76, 228–230. [Google Scholar] [PubMed]
- Petursdottir, S.K.; Kristjansson, J.K. Silicibacter Lacuscaerulensis Gen. Nov., Sp. Nov., a Mesophilic Moderately Halophilic Bacterium Characteristic of the Blue Lagoon Geothermal Lake in Iceland. Extremophiles 1997, 1, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Tabolli, S.; Calza, A.; di Pietro, C.; Sampogna, F.; Abeni, D. Quality of Life of Psoriasis Patients before and after Balneo—Or Balneophototherapy. Yonsei Med. J. 2009, 50, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumiani, G.; Zanoni, M.; Agostini, G. THERAPEUTICAL NOTES-Evaluation of the Efficacy of Comano Thermal Baths Water versus Tap Water in the Treatment of Psoriasis. G. Ital. Dermatol. Venereol. 2000, 135, 259–264. [Google Scholar]
- Geat, D.; Giovannini, M.; Barlocco, E.G.; Pertile, R.; Farina, S.; Pace, M.; Filippeschi, C.; Girolomoni, G.; Cristofolini, M.; Baldo, E. Characteristics Associated with Clinical Response to Comano Thermal Spring Water Balneotherapy in Pediatric Patients with Atopic Dermatitis. Ital. J. Pediatr. 2021, 47, 91. [Google Scholar] [CrossRef]
- Nicoletti, G.; Corbella, M.; Jaber, O.; Marone, P.; Scevola, D.; Faga, A. Non-Pathogenic Microflora of a Spring Water with Regenerative Properties. Biomed. Rep. 2015, 3, 758–762. [Google Scholar] [CrossRef]
- Nicoletti, G.; Saler, M.; Pellegatta, T.; Malovini, A.; Faga, A.; Scalise, A.; Riva, F. Effects of a Spring Water on Human Skin Fibroblast in Vitro Cultures: Preliminary Results. Acta Vulnologica 2016, 14, 196–201. [Google Scholar]
- Harari, M. La Belleza No Está Sólo En La Superficie de La Piel: Características Del Mar Muerto y Los Cosméticos. An. Hidrol. Médica 2012, 5, S75. [Google Scholar] [CrossRef]
- Ma’or, Z.; Henis, Y.; Alon, Y.; Orlov, E.; Sorensen, K.B.; Oren, A. Antimicrobial Properties of Dead Sea Black Mineral Mud. Int. J. Dermatol. 2006, 45, 504–511. [Google Scholar] [CrossRef]
- Marie, A.; Vengosh, A. Sources of Salinity in Ground Water from Jericho Area, Jordan Valley. Ground Water 2001, 39, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Monographie La-Roche Posay. Available online: https://www.thermes-larocheposay.fr/medias/documentation/etudes-labo-2012.pdf (accessed on 15 December 2022).
- Richard, A.; Moyal, D.; Rougier, A.; Cesarini, J.P. Protective Effect of La Roche-Posay Thermal Water on UVB-Induced Photodamage in Man. In Proceedings of the Congrès Annuel de Recherche Dermatologique, Clermont-Ferrand, France, 4 June 1995; pp. 4–6. [Google Scholar]
- Juchaux, F. Physiological Effects of Manganese Gluconate and Calcium Combination from Saint-Gervais Mont Blanc Spring Water for Human Keratinocytes Differentiation. Clin. Dermatol. Ther. 2021, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hardy, P.; Hardy, J.L.; Many, P. Crénothérapie Des Grands Brûlés à Saint-Gervais-Les-Bains. Bilan 1985. Presse Therm. Clim. 1985, 122, 89–91. [Google Scholar]
- Hardy, P.; Many, P. Crenothérapie Des Grands Brûlés à Saint-Gervais-Les-Bains. Presse Therm. Clim. 1974, 111, 138–142. [Google Scholar]
- Hardy, P. Applications de La Crénothérapie Aux Séquelles Cicatricielles de Brûlures. Presse Therm. Clim. 1964, 101, 154. [Google Scholar]
- Gravelier, C.; Kanny, G.; Adetu, S.; Goffinet, L. Spa Therapy and Burn Scar Treatment: A Systematic Review of the Literature. Int. J. Biometeorol. 2020, 64, 2195–2203. [Google Scholar] [CrossRef]
- Lépinay, E.; Hardy, P. Bilan et Enseignement de Quatre Années d’application de La Crénothérapie Aux Séquelles Cicatricielles de Brûlures. Presse Therm. Clim 1964, 101, 106. [Google Scholar]
- Moufarrij, S.; Deghayli, L.; Raffoul, W.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.; Norberg, M.; Applegate, L.A. How Important Is Hydrotherapy? Effects of Dynamic Action of Hot Spring Water as a Rehabilitative Treatment for Burn Patients in Switzerland. Ann Burn. Fire Disasters 2014, 27, 184–191. [Google Scholar]
- Agua Termal Concentrada (EAUX MERES)—Quimibios. Available online: http://quimibios.com/producto/agua-termal-concentrada-eaux-meres/ (accessed on 15 December 2022).
- Berard, P.; Mazurier, C. Ressources En Eaux Thermales et Minérales Des Stations Du Département Des Pyrénées-Atlantiques (Rapport BRGM/RP 50176-FR). Stn. Therm. Salies-De-Béarn. 2000. Available online: http://infoterre.brgm.fr/rapports/RP-50176-FR.pdf (accessed on 15 December 2022).
Thermal Water | Origin | Composition | Cosmetic Formulations | Type of Study | Observed Effects | Specific Activities | Therapeutic Use | References |
---|---|---|---|---|---|---|---|---|
Avéne | Lavour (France) | Bicarbonate Calcium Magnesium Silica Sulfate Chloride Potassium Sodium | Spray | In vitro studies | Inhibition of mast cells activation Inhibition of degranulation induced by substance P Inhibition of the TNF-α-induced E-selectin and ICAM-1 expression Suppression of NF-κB transcription factor pathway activation Reverse the induction of IL-6 and the formation of ROS after UVB stimulation on human keratinocyte HaCaT cells | Effect on membrane fluidity Antiradical properties Anti-inflammatory effects Immunomodulatory effects Cell differentiation Antioxidant properties | Acne Atopic dermatitis | [7,8,9,10,11,12,13] |
Clinical trials | Decreased erythema Pain reduction Pruritus reduction | Anti-irritant activity Soothing properties | Actinic keratosis Acne Post photodynamic therapy Dermal melasma | [14,15] | ||||
Clinical and inflammatory biomarkers study | Clinical symptoms reduction Reduction of the potentially pathogenic bacteria in growth phase | Anti-inflammatory properties Preventing growth bacteria | Psoriasis Atopic dermatitis | [16] | ||||
Ex vivo study and clinical study | Maintaining mechanical properties and hydration after a chemical peeling Redness reduction Skin sensitivity reduction | Protection against dehydration Anti-irritant activity | Post-chemical peeling intervention | [17] | ||||
Emollient cream containing an Aquaphilus dolomiae extract | Open-label, real-world study | Significant improvements in xerosis and pruritus severity Reduction in itch duration SCORAD improvement Improvements in sleep quality and DLQI scores Reduction of xerosis severity in patients treated for cancer | Soothing and skin hydration properties Anti-irritant activity | Xerosis pruritus | [18,19] | |||
Significant improvements in xerosis and pruritus severity Reduction in itch duration SCORAD improvement Improvements in sleep quality and DLQI scores Reduction of xerosis severity in patients treated for cancer | ||||||||
Blue Lagoon | Grindavik (Iceland) | Chloride Sodium Potassium Calcium Silica | Natural thermal water combined with NB-UV + moisturizing cream | Clinical and ex vivo studies | SCORAD improvement Reduction in circulating CLA+ peripheral blood T cells Decrease of Th1/Th17 and Tc1/Tc17 inflammatory response | Anti-inflammatory properties | Psoriasis | [20,21] |
Extracts from microalgae and silica mud Cream made of microalgae and silica mud extracts | In vitro and in vivo studies | Silica mud extracts and coccoid and filamentous algae extracts: induction the expression of genes relevant for keratinocyte differentiation such as transglutaminase 1, filaggrin, and involucrin Coccoid and filamentous algae extracts: increase collagen gene expression Cream: increase mRNA expression for involucrin, filaggrin and transglutaminase-1 and induction collagen 1A1 and 1A2 mRNA expression; UV-induced gene expression reduction; decrease in TEWL | Skin barrier improvement Protection against extrinsic skin ageing | Healthy skin UVA irradiated skin | [22] | |||
Exopolysaccharides from Cyanobacterium aponinum | In vitro studies | Increase IL-10 secretion by human dendritic cells Increase differentiation of T cells into T regulatory cells Attenuate T cell activation evidenced by lowered proportion of the cells expressing CD69 and a decrease in their cytokine secretion Reduce secretion of the chemokines CXCL10 and CCL20 Reduced inflammatory cell recruitment Reduce keratinocyte production of LL37 inactivation of the Dectin-1 receptor | Anti-inflammatory properties | Psoriasis | [23,24] | |||
Blue Lagoon algae extracts Cream composed of Blue Lagoon algae extracts | In vitro and in vivo studies | Decrease of the expression of α-melanocyte-stimulating hormone-induced expression of genes involved in melanin synthesis Reduction of number of pigmentation spots | Uneven skin pigmentation | [25] | ||||
Comano | Comano-Trentino (Italy) | Bicarbonate Calcium Sulphate Magnesium | Natural thermal spring water | In vitro studies | Reduction of all vascular endothelial growth factor-A-mediated angiogenic, vessel permeabilizing, and chemotactic effects Reduction of intracellular levels and secretion rates of IL-6 Downregulation of the expression of cytokeratin-16 Improvement of cell vitality of the human keratinocyte’s cultures | Reduction of abnormal differentiation | Psoriasis Wound healing | [26,27,28,29] |
In vivo experimental study | Increase keratinocyte proliferation and migration Modulation of the regenerated collagen and elastic fibers in the dermis | Improvement of skin regeneration | Wound healing | [30] | ||||
Ex vivo model | Markable anti-inflammatory effect by reducing overall dermal cell infiltration | Tissue regeneration and wound healing | Wound healing | [31] | ||||
Cró | Beira Interior (Portugal) | Bicarbonate Sodium Silica Calcium Potassium Magnesium | Gel | In vitro study and clinical trial | Promotes the normal human dermal fibroblasts adhesion and proliferation Hydration increase Decrease in TEWL Lesser roughness Lower scaliness Higher smoothness Skin relief improvement | Cell proliferation Hydration properties | - | [32] |
Dead Sea | Dead Sea (Israel) | Magnesium Calcium Potassium Sodium Strontium Chloride Bromo | Natural thermal spring water and anionic polysaccharide (PolluStop®) | In vitro study | Inhibition of IL-1α and prostaglandin E2 overproduction | Anti-inflammatory properties | Antipollution skin protection | [33] |
Cream (DermudTM) | In vitro study | Reversal of decrease of mitochondrial activity and increase of caspase 3 activity after UVB exposure application Inhibition of the secretion of TNF-α and IL-1α, IL-6 and IL-8 | Protective, antioxidant and anti-inflammatory properties | - | [34] | |||
Cream | Clinical trial | Improvement of OSAAD score, TEWL, stratum corneum hydration | - | Atopic dermatitis | [35] | |||
La Roche-Posay | La Roche-Posay (France) | Bicarbonate Calcium Silica Magnesium Strontium Selenium | Natural mineral spring water | In vitro studies | Better cell survival Reduced IL-1α, IL-6, TNF-α release Reverse the induction of IL-6 and the formation of ROS after UVB stimulation on human keratinocyte HaCaT cells Decrease migration Langerhans cells Decrease IL-6 production, both at the intracellular and extracellular levels Increase selenium-dependent glutathione peroxidase activity Decrease lipoperoxides production | Radical scavenger properties Anti-inflammatory properties Immunomodulatory properties | - | [11,36,37,38,39,40] |
Clinical trials | Reduce number of sunburn cells Reduced redness and telangiectasia intensity after 1 month treatment | Protection against UVB Anti-inflammatory properties Anticarcinogenic properties | Healthy skin Rosacea | [41,42] | ||||
Gel | In vivo study | Blood flow reduced after sodium lauryl sulphate irritation | Anti-inflammatory effect | Healthy skin | [42] | |||
Cream | In vivo study | Glutathione peroxidase activity increased | Protection against UVB | - | [43] | |||
Monfortinho | Idanha à Nova (Portugal) | Bicarbonate Silicate Sodium Magnesium Calcium Potassium | Cream | Clinical trial | Improvement of erythema Decreased pruritus | Skin hydration | Psoriasis Eczema | [44] |
In vitro study | Reduction on cell metabolism and proliferation | Antiproliferative effect Anti-inflammatory properties | Atopic dermatitis Psoriasis | [45] | ||||
São Pedro of Sul | São Pedro do Sul (Portugal) | Bicarbonate Sodium Silica Chloride Fluoride Silicate Sulphate | Natural mineral spring water | Clinical trial | Decreased TEWL | Anti-irritant effect | Skin irritation | [46] |
Saint-Gervais Mont Blanc | Saint-Gervais les Bains (France) | Sulphate Bicarbonate Sodium Calcium Manganese Boron | Natural mineral spring water | In vitro study | Promotion migration of keratinocytes Improvement of barrier function | Wound healing | Scars | [47] |
Salies-de-Béarn | Béarn des Gaves (France) | Bicarbonate Calcium Magnesium | Natural mineral spring water | Clinical trial | Decreased PASI | Minor therapeutic effects in psoriasis | Psoriasis | [48] |
Uriage | Alpes (France) | Sulphate Chloride Sodium Bicarbonate Calcium Magnesium | Natural mineral spring water | In vitro study | Effect on taurine transporter and sodium-dependent vitamin C transporter 1 expression | Regulation of the processes involved in aging | Skin fight against stressful situations such as dehydration, UVB irradiation and aging | [49] |
Cream | In vitro studies | Increased expression of claudin-4, claudin-6, filaggrin and aquaporine-3 | Skin hydration | Dry skin | [50,51] | |||
In vitro study | Increase of human dermal fibroblasts Reduce the lipid peroxidation through thiobarbituric acid reactive substances assay Recovery of catalase activity after UV irradiation Restoration of claudin-6 expression after UVB irradiation | Antioxidant Properties DNA protection | DNA protection of the cutaneous tissue in front of the UV irradiations | [50] | ||||
UTSW + rhamnose-rich polysaccharide (PS291®) | In vitro study | Increase of the generation time and reduction of biomass of Cutibacterium acnes (strain RT4 and RT5 acneic) Reduction of final biomass of Staphylococcus aureus | Antibiofilm activity | - | [52] | |||
Natural mineral spring water | In vitro study | Counteract the increase of biofilm formation of RT4 acneic strain of C. acnes after exposure to epinephrine; similar result with norepinephrine, but UTSW could not completely inhibit the effect of norepinephrine Decrease in RT6 biofilm formation but an exposure of the bacterium to epinephrine in the presence of UTSW induced a limited but significant increase in the biofilm | Antibiofilm activity in the presence of catecholamines | - | [53] | |||
Vichy | Auvergne (France) | Magnesium Potassium Calcium Sulphate Sodium | Natural mineral spring water | In vitro study | Increased expression of genes related to cutaneous homeostasis | Cell proliferation–differentiation balance role in hydration Antioxidant mechanisms and DNA repair | Skin ageing exposome | [54] |
Natural mineral spring water | In vitro study | Increased transglutaminase, filaggrin, involucrin, claudin-1, and zonula occludens-1 Increased the expression of β-defensin-4A and S100A7 Down-regulated IL-8, TNF-α, IL-12/IL-23p40, and increased IL-10 and IL-10/IL-12 Protected Langerhans cells in skin explants exposed to UV radiation | Skin barrier function Antimicrobial peptide defenses Immune defense functions Protection of Langerhans cells challenged by UV radiation | Strengthen the skin barrier function | [55] | |||
Dermocosmetic formulation: Minéral 89 Probiotic Fractions (M89PF) | Clinical trial | Improved skin renewal Better microbiome recovery after acute stress from a harsh cleanser Depigmenting properties on dark spots | Skin barrier effects Skin antioxidant defense activity Depigmenting properties | Prevent and repair skin barrier disruption and reinforce skin defenses in skin exposed to acute stresses | [56] |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Bicarbonate (mg/L) | 226.7 |
Sulphate (mg/L) | 13.1 |
Chloride (mg/L) | 5.4 |
Nitrate (mg/L) | 1.4 |
Fluoride (mg/L) | 0.1 |
Phosphate (mg/L) | 0.3 |
Silica SiO2 (mg/L) | 14 |
Calcium (mg/L) | 42.7 |
Magnesium (mg/L) | 21.2 |
Potassium (mg/L) | 0.8 |
Sodium (mg/L) | 4.8 |
Iron (mg/L) | <0.1 |
Manganese (mg/L) | <0.1 |
Strontium (mg/L) | 0.1 |
Lithium (mg/L) | <0.1 |
Boron (μg/L) | 220 |
Cadmium (μg/L) | 20 |
Zinc (μg/L) | 2 |
Copper (μg/L) | <5 |
Selenium (μg/L) | <5 |
Barium (μg/L) | 220 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Silica SiO2 (mg/L) | 137 |
Sodium (mg/L) | 9280 |
Potassium (mg/L) | 1560 |
Calcium (mg/L) | 1450 |
Magnesium (mg/L) | 1.41 |
CO2 (mg/L) | 16.5 |
Sulphate (mg/L) | 38.6 |
Chloride (mg/L) | 18,500 |
Fluoride (mg/L) | 0.14 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Bicarbonate (mg/L) | 196.56 |
Sulphate (mg/L) | 6.9 |
Chloride (mg/L) | 0.80 |
Nitrate (mg/L) | 0.30 |
Fluoride (mg/L) | 0.43 |
Phosphate (mg/L) | 0.03 |
Silica SiO2 (mg/L) | 4.90 |
Calcium (mg/L) | 48.90 |
Magnesium (mg/L) | 12.16 |
Potassium (mg/L) | 0.5 |
Sodium (mg/L) | 2.0 |
Iron (mg/L) | 0.010 |
Manganese (mg/L) | 0.0016 |
Strontium (mg/L) | 0.23 |
Zinc (μL) | 0.043 |
Copper (μg/L) | 0.005 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Bicarbonate (mg/L) | 157 |
Sulphate (mg/L) | 14.1 |
Chloride (mg/L) | 33 |
Nitrate (mg/L) | <0.20 |
Fluoride (mg/L) | 15.7 |
Silica SiO2 (mg/L) | 47.8 |
Sodium (mg/L) | 103 |
Calcium (mg/L) | 3.5 |
Magnesium (mg/L) | 0.21 |
Potassium (mg/L) | 2.7 |
Lithium (mg/L) | 0.35 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Chloride (mg/L) | 224,200 |
Bicarbonate (mg/L) | 200 |
Sulphate (mg/L) | 280 |
Bromide (mg/L) | 4500 |
Calcium (mg/L) | 17,600 |
Magnesium (mg/L) | 42,120 |
Potassium (mg/L) | 7600 |
Sodium (mg/L) | 41,600 |
Strontium (mg/L) | 150 |
Manganese (μg/L) | 9800 |
Zinc (μg/L) | 16 |
Nickel (μg/L) | 41.08 |
Copper (μg/L) | 2.18 |
Cobalt (μg/L) | 0.69 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Bicarbonate (mg/L) | 387 |
Sulphate (mg/L) | 56.1 |
Chloride (mg/L) | 22.6 |
Nitrate (mg/L) | 1.6 |
Fluoride (mg/L) | 0.2 |
Bromide (mg/L) | 0.3 |
Phosphate (mg/L) | <0.1 |
Silica SiO2 (mg/L) | 31.6 |
Calcium (mg/L) | 149.0 |
Magnesium (mg/L) | 4.4 |
Potassium (mg/L) | 1.9 |
Sodium (mg/L) | 1.3 |
Lithium (mg/L) | <0.1 |
Iron (mg/L) | <0.005 |
Manganese (mg/L) | <0.003 |
Strontium (mg/L) | 0.3 |
Selenium (μg/L) | 53 |
Copper (μg/L) | <5 |
Zinc (μg/L) | <5 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Sulphate (mg/L) | <5 |
Sulfide (mg/L S) | <0.17 * |
Chloride (mg/L) | 3.7 |
Dissolved carbon dioxide (mg/L CO2) | 27 |
Nitrate (mg/L) | <5.0 * |
Fluoride (mg/L) | 0.05 |
Phosphate (mg/L) | <0.05 * |
Silica SiO2 (mg/L) | 16 |
Calcium (mg/L) | 1.6 |
Magnesium (mg/L) | 2.7 |
Potassium (mg/L) | 0.90 |
Sodium (mg/L) | 3.3 |
Boron (mg/L) | <0.17 * |
Manganese (μg/L) | <15 * |
Zinc (μg/L) | <0.20 * |
Cobalt (μg/L) | <4 * |
Copper (μg/L) | <10 * |
Chromium (μg/L) | <10 * |
Selenium (μg/L) | <1 * |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Sulphate (mg/L) | 1812 |
Chloride (mg/L) | 530 |
Bicarbonate (mg/L) | 247 |
Sodium (mg/L) | 944 |
Calcium (mg/L) | 234 |
Magnesium (mg/L) | 26.8 |
Potassium (mg/L) | 29 |
Barium (mg/L) | 17 |
Manganese (mg/L) | 0.327 |
Boron (mg/L) | 5.03 |
Strontium (mg/L) | 8.9 |
Zinc (μg/L) | 57 |
Iron (μg/L) | <30 |
Aluminium (μg/L) | <15 |
Antimony (μg/L) | <5 |
Copper (μg/L) | <2 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Chloride (mg/L) | 152,140 |
Sulphate (mg/L) | 980 |
Carbonate (mg/L) | 225 |
Magnesium (mg/L) | 980 |
Potassium (mg/L) | 1370 |
Calcium (mg/L) | 1450 |
Fluoride (mg/L) | 1 |
Bromide (mg/L) | 160 |
Silicon (mg/L) | 30 |
Lithium (mg/L) | 9 |
Iron (mg/L) | 32 |
Manganese (mg/L) | 8 |
Boron (mg/L) | 1.5 |
Chromium (mg/L) | 2 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Bicarbonate (mg/L) | 126.9 |
Sulphate (mg/L) | 9.7 |
Chloride (mg/L) | 27.7 |
Fluoride (mg/L) | 18.2 |
Carbonate (mg/L) | 4.8 |
Silicate (mg/L) | 12.4 |
Nitrate (mg/L) | <0.12 |
Total sulfur (in I2 0.01 N) (mg/L) | 18.4 |
Silica SiO2 (mg/L) | 65.5 |
Calcium (mg/L) | 3 |
Magnesium (mg/L) | <0.03 |
Potassium (mg/L) | 3.3 |
Sodium (mg/L) | 93 |
Selenium (μg/L) | <0.0012 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Sulphate (mg/L) | 2860 |
Chlorides (mg/L) | 3500 |
Sodium (mg/L) | 2360 |
Bicarbonate (mg/L) | 390 |
Calcium (mg/L) | 600 |
Magnesium (mg/L) | 125 |
Potassium (mg/L) | 45.5 |
Silicon (mg/L) | 42 |
Zinc (mg/L) | 0.160 |
Manganese (mg/L) | 0.154 |
Copper (mg/L) | 0.075 |
Iron (mg/L) | 0.015 |
Anions/Cations/Trace Elements and Other Compounds | |
---|---|
Hydrogenocarbonates (mg/L) | 4818.633 |
Orthophosphate (mg/L) | 0.210 |
Sulphate (mg/L) | 182.39 |
Boron (mg/L) | 0.970 |
Calcium (mg/L) | 165.61 |
Fluoride (mg/L) | 7.67 |
Lithium (mg/L) | 5.17 |
Magnesium (mg/L) | 12.08 |
Potassium (mg/L) | 103.56 |
Silicon (mg/L) | 11.78 |
Sodium (mg/L) | 1862.88 |
Strontium (mg/L) | 1.63 |
Iron (mg/L) | 0.810 |
Manganese (mg/L) | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueiredo, A.C.; Rodrigues, M.; Mourelle, M.L.; Araujo, A.R.T.S. Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations. Cosmetics 2023, 10, 27. https://doi.org/10.3390/cosmetics10010027
Figueiredo AC, Rodrigues M, Mourelle ML, Araujo ARTS. Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations. Cosmetics. 2023; 10(1):27. https://doi.org/10.3390/cosmetics10010027
Chicago/Turabian StyleFigueiredo, Ana Carolina, Márcio Rodrigues, M. Lourdes Mourelle, and André R. T. S. Araujo. 2023. "Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations" Cosmetics 10, no. 1: 27. https://doi.org/10.3390/cosmetics10010027
APA StyleFigueiredo, A. C., Rodrigues, M., Mourelle, M. L., & Araujo, A. R. T. S. (2023). Thermal Spring Waters as an Active Ingredient in Cosmetic Formulations. Cosmetics, 10(1), 27. https://doi.org/10.3390/cosmetics10010027