Upregulation of Canthaxanthin Biosynthesis by Paracoccus bogoriensis PH1 from Hot-Spring Origin via Sustainable Fermentation Strategy in Laboratory-Scale Bioreactor
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Selection and Inoculum Preparation
2.2. Determination of Pigment Content and Cell Dry Weight
2.3. Investigation of the Effects of pH and Temperature on Growth and Pigment Production in Flask Culture
2.4. Study of Growth Characteristics of P. bogoriensis PH1 in Bioreactor
2.5. Carotenoids Extraction
2.6. Determination of Wavelength Maxima (λmax) and Total Carotenoid Content (TCC)
2.7. HPLC Analysis
2.8. Purification of Canthaxanthin by Thin-Layer Chromatography (TLC)
2.9. LC-MS/MS Analysis
2.10. Determination of Antioxidant Activity of Purified Canthaxanthin Using the DPPH and ABTS Assays
2.11. Statistic Analysis
3. Results
3.1. Effects of Intrinsic and Extrinsic Factors on Pigment Production by P. bogoriensis PH1 in Flask Culture
3.2. Growth Characteristics and Pigment Production by P. bogoriensis PH1 in Bioreactor
3.3. Carotenoid Production by P. bogoriensis PH1 in Bioreactor
3.4. HPLC and LC-MS/MS Analysis of Purified Canthaxanthin
3.5. DPPH and ABTS Radical Scavenging Activity of Canthaxanthin Produced by P. bogoriensis PH1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, S.G.M.; Freire, M.C.L.C.; Oliveira, V.d.S.; Solisio, C.; Converti, A.; de Lima, Á.A.N. Astaxanthin delivery systems for skin application: A review. Mar. Drugs 2021, 19, 511. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; International Life Sciences Institute (ILSI): Washington, DC, USA, 2001. [Google Scholar]
- Arab, M.; Razavi, S.H.; Hosseini, S.M.; Nayebzadeh, K.; Meybodi, N.M.; Khanniri, E.; Mardi, P.; Mortazavian, A.M. Production and characterization of functional flavored milk and flavored fermented milk using microencapsulated canthaxanthin. LWT 2019, 114, 108373. [Google Scholar] [CrossRef]
- Lim, K.C.; Yusoff, F.M.; Sharif, M.; Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 2018, 10, 738–773. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef] [PubMed]
- Gebregziabher, B.S.; Gebremeskel, H.; Debesa, B.; Ayalneh, D.; Mitiku, T.; Wendwessen, T.; Habtemariam, E.; Nur, S.; Getachew, T. Carotenoids: Dietary sources, health functions, biofortification, marketing trend and affecting factors—A review. J. Agric. Food Res. 2023, 14, 100834. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The effect of lutein on eye and extra-eye health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.A.; Biesalski, H.K. Beta-carotene is an important vitamin a source for humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed]
- Azmin, S.N.H.M.; Sulaiman, N.S.; Mat Nor, M.S.; Abdullah, P.S.; Abdul Kari, Z.; Pati, S. A review on recent advances on natural plant pigments in foods: Functions, extraction, importance and challenges. Appl. Biochem. Biotechnol. 2022, 194, 4655–4672. [Google Scholar] [CrossRef]
- Meticulous Research. Natural Carotenoids Market Poised to Reach $3.3 Billion by 2035, Growing at a CAGR of 8.7% from 2025. PR Newswire, 20 June 2025. Available online: https://www.prnewswire.com/news-releases/natural-carotenoids-market-poised-to-reach-3-3-billion-by-2035--growing-at-a-cagr-of-8-7-from-2025exclusive-report-by-meticulous-research-302487021.html (accessed on 16 July 2025).
- Di Salvo, E.; Lo Vecchio, G.; De Pasquale, R.; De Maria, L.; Tardugno, R.; Vadala, R.; Cicero, N. Natural pigments production and their application in food, health and other industries. Nutrients 2023, 15, 1923. [Google Scholar] [CrossRef]
- Rahman, T.U.; Shah, S.; Hassan, S.; Fahad, S. Food security challenges and adaptation strategies in China amidst global climate change. J. Umm Al-Qura Univ. Appl. Sci. 2025, 1–14. [Google Scholar] [CrossRef]
- Ram, S.; Mitra, M.; Shah, F.; Tirkey, S.R.; Mishra, S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods 2020, 67, 103867. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Khan, S.; Kot, A.M. Current developments on the application of microbial carotenoids as an alternative to Synthetic pigments. Crit. Rev. Food Sci. Nutr. 2022, 62, 6932–6946. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, T.; Sieiro, C.; Poza, M.; Villa, T.G. Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J. Agric. Food Chem. 2001, 49, 1200–1202. [Google Scholar] [CrossRef]
- Karbalaei-Heidari, H.R.; Partovifar, M.; Memarpoor-Yazdi, M. Evaluation of the bioactive potential of secondary metabolites produced by a new marine Micrococcus species isolated from the Persian Gulf. Avicenna J. Med. Biotechnol. 2020, 12, 61–65. [Google Scholar]
- Duy, L.X.; Toan, T.Q.; Anh, D.V.; Hung, N.P.; Huong, T.T.T.; Long, P.Q.; Dat, N.M.; Le, D.T.T.; Pham, D.T.N.; Nhan, N.P.T.; et al. Optimisation of canthaxanthin extraction from fermented biomass of Paracoccus carotinifaciens 20181 VTP Bacteria Strain Isolated in Vietnam. Foods Raw Mater. 2021, 9, 117–125. [Google Scholar] [CrossRef]
- Venil, C.K.; Malathi, M.; Velmurugan, P.; Renuka Devi, P. Green synthesis of silver nanoparticles using canthaxanthin from Dietzia maris AURCCBT01 and Their cytotoxic properties against human keratinocyte cell line. J. Appl. Microbiol. 2021, 130, 1730–1744. [Google Scholar] [CrossRef]
- Osanjo, G.O.; Muthike, E.W.; Tsuma, L.; Okoth, M.W.; Bulimo, W.D.; Lünsdorf, H.; Abraham, W.-R.; Dion, M.; Timmis, K.N.; Mulaa, F.J. A Salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr. J. Microbiol. Res. 2009, 3, 426–433. [Google Scholar]
- Raddadi, N.; Cherif, A.; Daffonchio, D.; Neifar, M.; Fava, F. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 2015, 99, 7907–7913. [Google Scholar] [CrossRef]
- Rawat, M.; Chauhan, M.; Pandey, A. Extremophiles and their expanding biotechnological applications. Arch. Microbiol. 2024, 206, 247. [Google Scholar] [CrossRef]
- Gruszecki, W.I.; Strzałka, K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2005, 1740, 108–115. [Google Scholar] [CrossRef]
- Han, X.; Zhang, X.; Ren, L.; Wang, Y.; Xu, Y.; Liu, B.; Li, Y. Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris. Bioresour. Technol. 2020, 314, 123725. [Google Scholar] [CrossRef]
- Hegazy, A.A.; Abu-Hussien, S.H.; Elsenosy, N.K.; El-Sayed, S.M.; El-Naga, M.Y.A. Optimization, characterization and biosafety of carotenoids produced from whey using Micrococcus luteus. BMC Biotechnol. 2024, 24, 74. [Google Scholar] [CrossRef]
- Lyu, L.; Zhi, B.; Lai, Q.; Shao, Z.; Yu, Z. Paracoccus xiamenensis sp. nov., isolated from seawater on the Xiamen. Int. J. Syst. Evol. Microbiol. 2020, 70, 4285–4290. [Google Scholar] [CrossRef]
- Watsuntorn, W.; Kojonna, T.; Rene, E.R.; Lens, P.N.L.; Chulalaksananukul, W. Draft genome sequence and annotation of Paracoccus versutus MAL 1HM19, a nitrate-reducing, sulfide-oxidizing bacterium. Microbiol. Resour. Announc. 2020, 9, e0141919. [Google Scholar] [CrossRef] [PubMed]
- Casella, P.; Iovine, A.; Mehariya, S.; Marino, T.; Musmarra, D.; Molino, A. Smart Method for Carotenoids Characterization in Haematococcus pluvialis red phase and evaluation of astaxanthin thermal stability. Antioxidants 2020, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- Loh, W.L.C.; Huang, K.-C.; Ng, H.S.; Lan, J.C.-W. Exploring the fermentation characteristics of a newly isolated marine bacteria strain, Gordonia terrae TWRH01 for carotenoids production. J. Biosci. Bioeng. 2020, 130, 187–194. [Google Scholar] [CrossRef]
- De Carvalho, L.M.J.; Gomes, P.B.; de Oliveira Godoy, R.L.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef]
- Gupta, P.; Sreelakshmi, Y.; Sharma, R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 2015, 11, 5. [Google Scholar] [CrossRef]
- Lorquin, J.; Molouba, F.; Dreyfus, B.L. Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains. Appl. Environ. Microbiol. 2009, 63, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.; June Chelyn, L.; Vimala, S.; Mohd Fairulnizal, M.N.; Brownlee, I.A.; Amin, I. Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon 2020, 6, e04654. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids: Distribution, function in nature, and analysis using LC-photodiode array detector (DAD)-MS and MS/MS system. Mass Spectrom. 2023, 12, A0133. [Google Scholar] [CrossRef]
- Naranjo-Durán, A.M.; Quintero-Quiroz, J.; Ciro-Gómez, G.L.; Barona-Acevedo, M.-J.; Contreras-Calderón, J.C. Characterization of the antioxidant activity, carotenoid profile by HPLC-MS of exotic Colombian fruits (goldenberry and purple passion fruit) and optimization of antioxidant activity of this fruit blend. Heliyon 2023, 9, e17819. [Google Scholar] [CrossRef]
- Chang, C.; Meikle, T.G.; Su, Y.; Wang, X.; Dekiwaida, C.; Drummond, C.J.; Conn, C.E.; Yang, Y. Encapsulation in egg white protein nanoparticles protects antioxidant activity of curcumin. Food Chem. 2019, 280, 65–72. [Google Scholar] [CrossRef]
- Padan, E.; Bibi, E.; Ito, M.; Krulwich, T.A. Alkaline pH homeostasis in bacteria: New insights. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1717, 67–88. [Google Scholar] [CrossRef]
- Hicks, D.B.; Jereen, A.; Fackelmayer, O.J.; LaFountain, A.M.; Frank, H.A.; Krulwich, T.A. Mutational loss of carotenoids in alkaliphilic Bacillus pseudofirmus OF4 results in sensitivity to oxidative stress and growth at high pH. Microbiology 2019, 165, 969–977. [Google Scholar] [CrossRef]
- Lima, J.G.O.; Veríssimo, N.V.P.; Lima, C.A.; Pichel, F.P.; de Paula, A.V.; Santos-Ebinuma, V.C. Improvement of torularhodin production by Rhodotorula glutinis through the stimulation of physicochemical stress and application of the bioproduct as an additive in the food industry. Bioprocess Biosyst. Eng. 2025, 48, 543–563. [Google Scholar] [CrossRef]
- Hu, Z.-C.; Zheng, Y.-G.; Wang, Z.; Shen, Y.-C. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb. Technol. 2006, 39, 586–590. [Google Scholar] [CrossRef]
- Dias, C.; Sousa, S.; Caldeira, J.; Reis, A.; Lopes da Silva, T. New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresour. Technol. 2015, 189, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Casalot, L.; Valette, C.; Burot, C.; Rontani, J.F.; Bonin, P. Do carotenoids protect phytodetritus-associated bacteria from oxidative stress? Environ. Sci. Pollut. Res. Int. 2025, 32, 11167–11178. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Sivanesan, I.; Keum, Y.S. Emerging roles of carotenoids in the survival and adaptations of microbes. Indian J. Microbiol. 2019, 59, 125–127. [Google Scholar] [CrossRef]
- Cruz-Angeles, N.A.M.; Devanadera, M.K.P.; Watanabe, K.; Bennett, R.M.; Aki, T.; Dedeles, G.R. Singlet oxygen antioxidant capacity of carotenoids from Halorubrum salinarum. Lett. Appl. Microbiol. 2025, 78, ovaf085. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Niu, Y.; Duan, C.; Su, H.; Yan, G. A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast. Process Biochem. 2013, 48, 195–200. [Google Scholar] [CrossRef]
- Elfekey, N.; Elmahmoudy, M.; Zhang, Y.; Guo, J.; Bao, Y. Lipid and Carotenoid Production by Rhodotorula glutinis with a Combined Cultivation Mode of Nitrogen, Sulfur, and Aluminum Stress. Appl. Sci. 2019, 9, 2444. [Google Scholar] [CrossRef]
- Feehily, C.; Karatzas, K.A.G. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 2013, 114, 11–24. [Google Scholar] [CrossRef]
- Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 2016, 7, 546. [Google Scholar] [CrossRef]
- Bakhtiyari, A.S.; Etemadifar, Z.; Borhani, M.S.; Zamanian, N. Enhancement of biomass and total carotenoid content of a UV-resistant strain of Dietzia maris in response to different carbon and nitrogen sources. BioTechnologia 2021, 5, 197–207. [Google Scholar] [CrossRef]
- Khodaiyan, F.; Razavi, S.H.; Emam-Djomeh, Z.; Mousavi, M. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. J. Microbiol. Biotechnol. 2007, 17, 195–201. [Google Scholar]
- Klueglein, N.; Zeitvogel, F.; Stierhof, Y.-D.; Floetenmeyer, M.; Konhauser, K.O.; Kappler, A.; Obst, M. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol. 2014, 80, 1051–1061. [Google Scholar] [CrossRef]
- Nawaz, T.; Fahad, S.; Gu, L.; Xu, L.; Zhou, R. Harnessing nitrogen-fixing cyanobacteria for sustainable agriculture: Opportunities, challenges, and implications for food security. Nitrogen 2025, 6, 16. [Google Scholar] [CrossRef]
- Jeong, S.-W.; Kim, J.-H.; Kim, J.-W.; Kim, C.Y.; Kim, S.Y.; Choi, Y.J. Metabolic engineering of extremophilic bacterium Deinococcus radiodurans for the production of the novel carotenoid deinoxanthin. Microorganisms 2020, 9, 44. [Google Scholar] [CrossRef]
- Naik, R.; Gupte, S. Characterization of pigment produced by high carotenoid yielding bacteria Paracoccus marcusii RSPO1 and evaluation of its anti-diabetic, anti-microbial and antioxidant properties. Nat. Prod. Res. 2024, 38, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Afra, S.; Makhdoumi, A.; Matin, M.M.; Feizy, J. A novel red pigment from marine Arthrobacter sp. G20 with specific anticancer activity. J. Appl. Microbiol. 2017, 123, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Asker, D.; Ohta, Y. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioengin. 1999, 88, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef]
- Neto, F.C.; Guaratini, T.; Colepicolo, P.; Lopes, J.; Gates, P.; Lopes, N. Effect of charge generation in ESI source on the neutral aromatic elimination mechanism in xanthophylls. Rev. Semioses 2017, 10, 70–76. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M. Characterizing the natural canthaxanthin/2-hydroxypropyl-β-cyclodextrin inclusion complex. Carbohydr. Polym. 2014, 101, 1147–1153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inyoo, A.; Pinmanee, P.; Thongkred, P.; Wongratpanya, K.; Kanokrung, A.; Watanadilok, R.; Pekkoh, J.; Pumas, C.; Sattayawat, P.; Bovonsombut, S.; et al. Upregulation of Canthaxanthin Biosynthesis by Paracoccus bogoriensis PH1 from Hot-Spring Origin via Sustainable Fermentation Strategy in Laboratory-Scale Bioreactor. Biology 2025, 14, 1334. https://doi.org/10.3390/biology14101334
Inyoo A, Pinmanee P, Thongkred P, Wongratpanya K, Kanokrung A, Watanadilok R, Pekkoh J, Pumas C, Sattayawat P, Bovonsombut S, et al. Upregulation of Canthaxanthin Biosynthesis by Paracoccus bogoriensis PH1 from Hot-Spring Origin via Sustainable Fermentation Strategy in Laboratory-Scale Bioreactor. Biology. 2025; 14(10):1334. https://doi.org/10.3390/biology14101334
Chicago/Turabian StyleInyoo, Anuttree, Phitsanu Pinmanee, Paweena Thongkred, Kanok Wongratpanya, Amonrat Kanokrung, Rawiwan Watanadilok, Jeeraporn Pekkoh, Chayakorn Pumas, Pachara Sattayawat, Sakunnee Bovonsombut, and et al. 2025. "Upregulation of Canthaxanthin Biosynthesis by Paracoccus bogoriensis PH1 from Hot-Spring Origin via Sustainable Fermentation Strategy in Laboratory-Scale Bioreactor" Biology 14, no. 10: 1334. https://doi.org/10.3390/biology14101334
APA StyleInyoo, A., Pinmanee, P., Thongkred, P., Wongratpanya, K., Kanokrung, A., Watanadilok, R., Pekkoh, J., Pumas, C., Sattayawat, P., Bovonsombut, S., Pathom-aree, W., Nimchua, T., & Chitov, T. (2025). Upregulation of Canthaxanthin Biosynthesis by Paracoccus bogoriensis PH1 from Hot-Spring Origin via Sustainable Fermentation Strategy in Laboratory-Scale Bioreactor. Biology, 14(10), 1334. https://doi.org/10.3390/biology14101334