Differential Immunostimulatory Effects of Hydrophilic and Hydrophobic Solanum trilobatum Fractions in Tilapia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Maintenance
2.2. Plant Extract Preparation and Experimental Design
2.3. Nonspecific Immune Response
2.4. Specific Immune Response
2.5. Disease Resistance
2.6. GC-MS Analysis
2.7. In Silico Evaluation of Bioavailability of the Phytoconstituents
2.8. Statistical Analysis
3. Results
3.1. Nonspecific Immune Response
3.1.1. Globulin Level
3.1.2. Lysozyme Activity
3.1.3. Antiprotease Activity
3.1.4. Reactive Oxygen Species (ROS) Production in Peripheral Blood Leucocytes
3.1.5. Reactive Nitrogen Intermediate (RNI) Production in Peripheral Blood Leucocytes
3.1.6. Myeloperoxidase Activity in Peripheral Blood Leucocytes
3.2. Specific Immune Response
3.3. Disease Resistance
3.4. GC-MS Analysis
3.5. In Silico Evaluation of Bioavailability of the Phytoconstituents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Blue Transformation—Roadmap 2022–2030: A Vision for FAO’s Work on Aquatic Food Systems; FAO: Rome, Italy, 2022. [Google Scholar]
- Robertsen, B. Modulation of the Non-Specific Defence of Fish by Structurally Conserved Microbial Polymers. Fish Shellfish. Immunol. 1999, 9, 269–290. [Google Scholar] [CrossRef]
- Raa, J.; Rorstad, G.; Engstad, R.; Robertsen, B. The Use of Immunostimulants to Increase Resistance of Aquatic Organisms to Microbial Infections. In Proceedings of the Diseases in Asian Aquaculture; Shariff, I.M., Subasinghe, R.P., Arthus, J.R., Eds.; Asian Fisheries Society: Selangor, Malaysia, 1992; pp. 39–50. [Google Scholar]
- Subramani, P.A.; Priyadarshini, S.K.; Balasubramanian, R.; Gnaneswari, M.D.; Kumar, D.G.; Rajendran, P.; Alexander, C.; Michael, R.D. Current Status and Recent Advancements with Immunostimulants in Aquaculture. In Immunomodulators in Aquaculture and Fish Health; Elumalai, P., Soltani, M., Lakshmi, S., Eds.; CRC Press: Boca Raton, FL, USA, 2023; ISBN 9781003361183. [Google Scholar]
- Abareethan, M.; Sathiyapriya, R.; Pavithra, M.E.; Parvathy, S.; Thirumalaisamy, R.; Selvankumar, T.; Chinnathambi, A.; Almoallim, H.S. Biogenic Silver Nanoparticles from Solanum trilobatum Leaf Extract and Assessing Their Antioxidant and Antimicrobial Potential. Chem. Phys. Impact 2024, 9, 100771. [Google Scholar] [CrossRef]
- Pandurangan, A.; Khosa, R.L.; Hemalatha, S. Anti-Inflammatory Activity of an Alkaloid from Solanum trilobatum on Acute and Chronic Inflammation Models. Nat. Prod. Res. 2011, 25, 1132–1141. [Google Scholar] [CrossRef]
- Sini, H.; Devi, K.S. Antioxidant Activities of the Chloroform Extract of Solanum trilobatum. Pharm. Biol. 2004, 42, 462–466. [Google Scholar] [CrossRef]
- Govindan, S.; Viswanathan, S.; Vijayasekaran, V.; Alagappan, R. A Pilot Study on the Clinical Efficacy of Solanum xanthocarpum and Solanum trilobatum in Bronchial Asthma. J. Ethnopharmacol. 1999, 66, 205–210. [Google Scholar] [CrossRef]
- Divyagnaneswari, M.; Christybapita, D.; Michael, R.D. Enhancement of Nonspecific Immunity and Disease Resistance in Oreochromis mossambicus by Solanum trilobatum Leaf Fractions. Fish Shellfish. Immunol. 2007, 23, 249–259. [Google Scholar] [CrossRef]
- Subramani, P.A.; Cheeran, V.; Ramanujam, G.M.; Narala, V.R. Clinical Trials of Curcumin, Camptothecin, Astaxanthin and Biochanin. In Natural Products in Clinical Trials; Atta-ur-Rahman, S.A., El-Seedi, H., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; Volume I. [Google Scholar]
- Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors. Pharmacol. Res. 2019, 144, 19–50. [Google Scholar] [CrossRef]
- Michael, R.D.; Srinivas, S.D.; Sailendri, K.; Muthukkaruppan, V.R. A Rapid Method for Repetitive Bleeding in Fish. Indian J. Exp. Biol. 1994, 32, 838–839. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Doumas, B.T.; Ard Watson, W.; Biggs, H.G. Albumin Standards and the Measurement of Serum Albumin with Bromcresol Green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar] [CrossRef]
- Hutchinson, T.H.; Manning, M.J. Seasonal Trends in Serum Lysozyme Activity and Total Protein Concentration in Dab (Limanda limanda L.) Sampled from Lyme Bay, U.K. Fish Shellfish. Immunol. 1996, 6, 473–482. [Google Scholar] [CrossRef]
- Bowden, T.J.; Butler, R.; Bricknell, I.R.; Ellis, A.E. Serum Trypsin-Inhibitory Activity in Five Species of Farmed Fish. Fish Shellfish. Immunol. 1997, 7, 377–385. [Google Scholar] [CrossRef]
- Zuo, X.; Woo, P.T.K. Natural Anti-Proteases in Rainbow Trout, Oncorhynchus mykiss and Brook Charr, Salvelinus fontinalis and the in Vitro Neutralization of Fish A2-Macroglobulin by the Metalloprotease from the Pathogenic Haemoflagellate, Cryptobia salmositica. Parasitology 1997, 114, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Secombes, C.J. Isolation of Salmonid Macrophages and Analysis of Their Killing Activity. In Techniques in Fish Immunology; Stolen, J.S., Fletcher, T.C., Anderson, D.P., Robertson, B.S., van Muiswinkel, W.B., Eds.; SOS Publications: Fair Haven, NJ, USA, 1990; Volume I, pp. 137–154. [Google Scholar]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Palić, D.; Andreasen, C.B.; Menzel, B.W.; Roth, J.A. A Rapid, Direct Assay to Measure Degranulation of Primary Granules in Neutrophils from Kidney of Fathead Minnow (Pimephales promelas Rafinesque, 1820). Fish Shellfish. Immunol. 2005, 19, 217–227. [Google Scholar] [CrossRef]
- Karunasagar, I.; Ali, A.; Otta, S.K.; Karunasagar, I. Immunization with Bacterial Antigens: Infections with Motile Aeromonads. Dev. Biol. Stand. 1997, 90, 135–141. [Google Scholar]
- Binuramesh, C.; Prabakaran, M.; Steinhagen, D.; Michael, R.D. Effect of Sex Ratio on the Immune System of Oreochromis mossambicus (Peters). Brain Behav. Immun. 2006, 20, 300–308. [Google Scholar] [CrossRef]
- Ellis, A.E. General Principles of Fish Vaccination. In Fish Vaccination; Academic Press: London, UK, 1988; pp. 1–19. [Google Scholar]
- Sharma, R.K.; Bibi, S.; Chopra, H.; Khan, M.S.; Aggarwal, N.; Singh, I.; Ahmad, S.U.; Hasan, M.M.; Moustafa, M.; Al-Shehri, M.; et al. In Silico and In Vitro Screening Constituents of Eclipta alba Leaf Extract to Reveal Antimicrobial Potential. Evid.-Based Complement. Altern. Med. 2022, 2022, 3290790. [Google Scholar] [CrossRef]
- Christybapita, D.; Divya Gnaneswari, M.; Sharma, S.; Michael, R.D.; Subramani, P.A. In Silico Insights into the Molecular Mechanisms of Eclipta alba Leaf Fractions Enhancing Nonspecific Immune Mechanisms and Resistance to Aeromonas hydrophila in Oreochromis Mossambicus (Peters). Aquac. Rep. 2025, 42, 102774. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 Update. Nucleic Acids Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef]
- Faheem, M.; Hoseinifar, S.H.; Firouzbakhsh, F. Medicinal Plants in Tilapia Aquaculture. In Novel Approaches Toward Sustainable Tilapia Aquaculture; Springer: Cham, Switzerland, 2023; pp. 161–200. [Google Scholar]
- Zhang, X.; Sun, Z.; Wang, Y.; Cao, Y.; Wang, G.; Cao, F. Enhancement of Growth, Antioxidative Status, Nonspecific Immunity, and Disease Resistance in Gibel Carp (Carassius auratus) in Response to Dietary Flos Populi Extract. Fish Physiol. Biochem. 2022, 48, 67–83. [Google Scholar] [CrossRef]
- Mbokane, E.M.; Moyo, N.A.G. A Systematic Review and Meta-Analysis of the Potential Effect of Medicinal Plants on Innate Immunity of Selected Freshwater Fish Species: Its Implications for Fish Farming in Southern Africa. Aquac. Int. 2024, 32, 315–335. [Google Scholar] [CrossRef]
- Wiegertjes, G.F.; Stet, R.M.; Parmentier, H.K.; van Muiswinkel, W.B. Immunogenetics of Disease Resistance in Fish: A Comparative Approach. Dev. Comp. Immunol. 1996, 20, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Vasudeva Rao, Y.; Das, B.K.; Jyotyrmayee, P.; Chakrabarti, R. Effect of Achyranthes aspera on the Immunity and Survival of Labeo rohita Infected with Aeromonas hydrophila. Fish Shellfish. Immunol. 2006, 20, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Sivaram, V.; Babu, M.M.; Immanuel, G.; Murugadass, S.; Citarasu, T.; Marian, M.P. Growth and Immune Response of Juvenile Greasy Groupers (Epinephelus tauvina) Fed with Herbal Antibacterial Active Principle Supplemented Diets against Vibrio harveyi Infections. Aquaculture 2004, 237, 9–20. [Google Scholar] [CrossRef]
- Yin, G.; Jeney, G.; Racz, T.; Xu, P.; Jun, X.; Jeney, Z. Effect of Two Chinese Herbs (Astragalus radix and Scutellaria radix) on Non-Specific Immune Response of Tilapia, Oreochromis niloticus. Aquaculture 2006, 253, 39–47. [Google Scholar] [CrossRef]
- Sahu, S.; Das, B.K.; Mishra, B.K.; Pradhan, J.; Sarangi, N. Effect of Allium sativum on the Immunity and Survival of Labeo rohita Infected with Aeromonas hydrophila. J. Appl. Ichthyol. 2007, 23, 80–86. [Google Scholar] [CrossRef]
- Sarder, M.R.I.; Thompson, K.D.; Penman, D.J.; McAndrew, B.J. Immune Responses of Nile Tilapia (Oreochromis niloticus L.) Clones: I. Non-Specific Responses. Dev. Comp. Immunol. 2001, 25, 37–46. [Google Scholar] [CrossRef]
- Engstad, R.E.; Robertsen, B.; Frivold, E. Yeast Glucan Induces Increase in Lysozyme and Complement-Mediated Haemolytic Activity in Atlantic Salmon Blood. Fish Shellfish. Immunol. 1992, 2, 287–297. [Google Scholar] [CrossRef]
- Ellis, A.E. Innate Host Defense Mechanisms of Fish against Viruses and Bacteria. Dev. Comp. Immunol. 2001, 25, 827–839. [Google Scholar] [CrossRef]
- Rao, Y.V.; Chakrabarti, R. Stimulation of Immunity in Indian Major Carp Catla catla with Herbal Feed Ingredients. Fish Shellfish. Immunol. 2005, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.; Choubert, G.; Houlihan, D.F.; Secombes, C.J. The Effect of Dietary Vitamin A and Astaxanthin on the Immunocompetence of Rainbow Trout. Aquaculture 1995, 133, 91–102. [Google Scholar] [CrossRef]
- Olivier, G.; Evelyn, T.P.T.; Lallier, R. Immunity to Aeromonas salmonicida in Coho Salmon (Oncorhynchus kisutch) Induced by Modified Freund’s Complete Adjuvant: Its Non-Specific Nature and the Probable Role of Macrophages in the Phenomenon. Dev. Comp. Immunol. 1985, 9, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.I.; Marsden, M.J.; Kim, Y.G.; Choi, M.S.; Secombes, C.J. The Effect of Glycyrrhizin on Rainbow Trout, Oncorhynchus mykiss (Walbaum), Leucocyte Responses. J. Fish Dis. 1995, 18, 307–315. [Google Scholar] [CrossRef]
- Peddie, S.; Zou, J.; Secombes, C.J. Immunostimulation in the Rainbow Trout (Oncorhynchus mykiss) Following Intraperitoneal Administration of Ergosan. Vet. Immunol. Immunopathol. 2002, 86, 101–113. [Google Scholar] [CrossRef]
- Dügenci, S.K.; Arda, N.; Candan, A. Some Medicinal Plants as Immunostimulant for Fish. J. Ethnopharmacol. 2003, 88, 99–106. [Google Scholar] [CrossRef]
- Paray, B.A.; Hoseini, S.M.; Hoseinifar, S.H.; Van Doan, H. Effects of Dietary Oak (Quercus castaneifolia) Leaf Extract on Growth, Antioxidant, and Immune Characteristics and Responses to Crowding Stress in Common Carp (Cyprinus carpio). Aquaculture 2020, 524, 735276. [Google Scholar] [CrossRef]
- Siwicki, A.K.; Anderson, D.P.; Rumsey, G.L. Dietary Intake of Immunostimulants by Rainbow Trout Affects Non-Specific Immunity and Protection against Furunculosis. Vet. Immunol. Immunopathol. 1994, 41, 125–139. [Google Scholar] [CrossRef]
- Ortuño, J.; Cuesta, A.; Rodríguez, A.; Esteban, M.A.; Meseguer, J. Oral Administration of Yeast, Saccharomyces cerevisiae, Enhances the Cellular Innate Immune Response of Gilthead Seabream (Sparus aurata L.). Vet. Immunol. Immunopathol. 2002, 85, 41–50. [Google Scholar] [CrossRef]
- Anderson, D.P. Immunostimulants, Adjuvants, and Vaccine Carriers in Fish: Applications to Aquaculture. Annu. Rev. Fish Dis. 1992, 2, 281–307. [Google Scholar] [CrossRef]
- Sudhakaran, D.S.; Srirekha, P.; Devasree, L.D.; Premsingh, S.; Michael, R.D. Immunostimulatory Effect of Tinospora cordifolia Miers Leaf Extract in Oreochromis mossambicus. Indian J. Exp. Biol. 2006, 44, 726–732. [Google Scholar] [PubMed]
- Venkatalakshmi, S.; Michael, R.D. Immunostimulation by Leaf Extract of Ocimum sanctum Linn. in Oreochromis mossambicus (Peters). J. Aquac. Trop. 2001, 16, 1–10. [Google Scholar]
- Logambal, S.M.; Michael, R.D. Azadirachtin—An Immunostimulant for Oreochromis mossambicus (Peters). J. Aquac. Trop. 2001, 16, 339–347. [Google Scholar]
- Abutbul, S.; Golan-Goldhirsh, A.; Barazani, O.; Zilberg, D. Use of Rosmarinus officinalis as a Treatment against Streptococcus iniae in Tilapia (Oreochromis sp.). Aquaculture 2004, 238, 97–105. [Google Scholar] [CrossRef]
- Citarasu, T.; Venkatramalingam, K.; Micheal Babu, M.; Raja Jeya Sekar, R.; Petermarian, M. Influence of the Antibacterial Herbs, Solanum trilobatum, Andrographis paniculata and Psoralea corylifolia on the Survival, Growth and Bacterial Load of Penaeus monodon Post Larvae. Aquac. Int. 2003, 11, 581–595. [Google Scholar] [CrossRef]
- Devasree, L.D.; Binuramesh, C.; Michael, R.D. Immunostimulatory Effect of Water Soluble Fraction of Nyctanthes arbortristis Leaves on the Immune Response in Oreochromis mossambicus (Peters). Aquac. Res. 2014, 45, 1581–1590. [Google Scholar] [CrossRef]
- Alexander, C.P.; John Wesly Kirubakaran, C.; Michael, R.D. Water Soluble Fraction of Tinospora cordifolia Leaves Enhanced the Non-Specific Immune Mechanisms and Disease Resistance in Oreochromis mossambicus. Fish Shellfish. Immunol. 2010, 29, 765–772. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Bhuvaneswari, R. Restorative Effect of Azadirachta indica Aqueous Leaf Extract Dip Treatment on Haematological Parameter Changes in Cyprinus carpio (L.) Experimentally Infected with Aphanomyces Invadans Fungus. J. Appl. Ichthyol. 2005, 21, 410–413. [Google Scholar] [CrossRef]
- Companjen, A.R.; Florack, D.E.A.; Slootweg, T.; Borst, J.W.; Rombout, J.H.W.M. Improved Uptake of Plant-Derived LTB-Linked Proteins in Carp Gut and Induction of Specific Humoral Immune Responses upon Infeed Delivery. Fish Shellfish. Immunol. 2006, 21, 251–260. [Google Scholar] [CrossRef]
- Bouic, P.J.D. The Role of Phytosterols and Phytosterolins in Immune Modulation: A Review of the Past 10 Years. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 471–475. [Google Scholar] [CrossRef]
- Lacaille-Dubois, M.-A.; Hanquet, B.; Cui, Z.-H.; Lou, Z.-C.; Wagner, H. A New Biologically Active Acylated Triterpene Saponin from Silene fortunei. J. Nat. Prod. 1999, 62, 133–136. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Velho, M.C.; Bassotto, V.A.; Ourique, A.F.; Da Silva, A.S.; Baldisserotto, B. Nanospheres as a Technological Alternative to Suppress Hepatic Cellular Damage and Impaired Bioenergetics Caused by Nerolidol in Nile Tilapia (Oreochromis niloticus). Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 751–759. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Abdelaziz, R.; Mansour, A.T.; Alqhtani, H.A.; Bin-Jumah, M.N.; Bayoumi, Y.; Arisha, A.H.; Al-Sagheer, A.A.; El-Murr, A.E. Effects of α-Sitosterol on Growth, Hematobiochemical Profiles, Immune-Antioxidant Resilience, Histopathological Features and Expression of Immune Apoptotic Genes of Nile tilapia, Oreochromis niloticus, Challenged with Candida albicans. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2025, 275, 111035. [Google Scholar] [CrossRef]
- Song, Y.; Lu, Z.; Zhang, X.; Xu, J.; Gong, M.; Meng, L.; Gong, Z.; Zheng, B. Dietary Β-sitosterol Supplementation Enhanced Intestinal Immune Function of Large Yellow Croaker (Larimichthys crocea) Infected with Aeromonas hydrophila. Aquac. Res. 2022, 53, 6545–6561. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, L.; Xue, M.; Liu, W.; Jiang, N.; Li, Y.; Chen, J.; Fan, Y.; Zhou, Y.; Meng, Y. Effects of Dietary β-Sitosterol Supplementation on Growth Performance, Antioxidant Ability, and Disease Resistance in Largemouth Bass Micropterus salmoides. Isr. J. Aquac.—Bamidgeh 2024, 76, 137–147. [Google Scholar] [CrossRef]
Fractions | Dose | 1 Week | 2 Weeks | 3 Weeks |
---|---|---|---|---|
WSF | 0.01% | 4.17 | 25.00 | 20.00 |
0.1% | 4.17 | 4.17 | 8.00 | |
1% | 20.83 | 4.17 | 12.00 | |
HSF | 0.01% | 20.83 | 20.83 | 28.00 |
0.1% | 12.50 | 54.17 | 32.00 | |
1% | 4.17 | 8.33 | 24.00 |
Chemical Class | Retention Time | Area | Area % | Compound Name | Molecular Formula | Molecular Weight, g/mol | N Violations |
---|---|---|---|---|---|---|---|
Alcohol | 22.207 | 103,451 | 0.59 | 1,3-Propanediol, dodecyl ethyl ether | C17H36O2 | 272 | 1 |
Alkanes | 12.338 | 703,424 | 4.05 | Nonane, 3-methyl-5-propyl- | C13H28 | 184 | 1 |
19.053 | 188,710 | 1.09 | 2-methylhexacosane | C27H56 | 380 | 1 | |
14.097 | 118,161 | 0.68 | Heptadecane, 3-methyl- | C18H38 | 254 | 1 | |
Alkylbenzene | 15.765 | 636,438 | 3.66 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydro | C18H28O3 | 292 | 1 |
Benzenoids | 7.449 | 6,997,607 | 40.24 | Azulene | C10H8 | 128 | 0 |
Carbohydrate | 18.189 | 48,125 | 0.28 | Carbonic acid, eicosyl vinyl ester | C23H44O3 | 368 | 1 |
Diterpene | 17.473 | 273,775 | 1.57 | Phytol | C20H40O | 296 | 1 |
14.793 | 127,124 | 0.73 | Neophytadiene | C20H38 | 278 | 1 | |
18.342 | 66,102 | 0.38 | Phytol, acetate | C22H42O2 | 338 | 1 | |
Ergostane steroids | 26.509 | 684,277 | 3.94 | Ergost-5-en-3-ol, (3.β.,24r)- | C28H48O | 400 | 1 |
Fatty acid methyl ester | 22.462 | 181,667 | 1.04 | Tricosanoic acid, methyl ester | C24H48O2 | 368 | 1 |
Fatty Alcohol | 20.733 | 180,506 | 1.04 | 1-hexacosanol | C26H54O | 382 | 1 |
17.3 | 161,875 | 0.93 | 6,11-hexadecadien-1-ol | C16H30O | 238 | 1 | |
Fattyacids esters | 17.349 | 155,442 | 0.89 | Methyl Stearate | C19H36O2 | 296 | 1 |
17.574 | 67,628 | 0.39 | Octadecanoic acid, methyl ester | C19H38O2 | 298 | 1 | |
Hydrocarbon | 10.196 | 1,247,832 | 7.18 | 1-chlorohexadecane | C16H33Cl | 260 | 1 |
Long chain fatty alcohol | 30.253 | 162,922 | 0.94 | 1,2-nonadecanediol | C19H40O2 | 300 | 1 |
Macrocyclin diterpene alcohol | 29.191 | 196,398 | 1.13 | Thunbergol | C20H34O | 290 | 1 |
Pentracyclic triterpenoid | 28.395 | 429,331 | 2.47 | 9,19-Cyclolanost-24-en-3-ol, (3.β.)- | C30H50O | 426 | 1 |
Phytosterol | 27.424 | 1,959,571 | 11.27 | γ-sitosterol | C29H50O | 414 | 1 |
26.749 | 1,210,014 | 6.96 | Stigmasta-5,23-dien-3-ol, (3.β.)- | C29H48O | 412 | 1 | |
25.533 | 156,360 | 0.9 | Cholest-5-en-3-ol (3.β)- | C27H46O | 386 | 1 | |
Quinone and hydroquinone lipids | 25.436 | 151,482 | 0.87 | Vitamin E | C29H50O2 | 430 | 1 |
Sesquiterpenoids | 16.382 | 79,887 | 0.46 | Heptadecane, 2,6,10,15-tetramethyl- | C21H44 | 296 | 1 |
Sesterterpenoids | 23.279 | 67,717 | 0.39 | α-tocospiro b | C29H50O4 | 462 | 1 |
Triterpene | 23.039 | 256,270 | 1.47 | Squalene | C30H50 | 410 | 1 |
25.225 | 325,188 | 1.87 | 24-Norursa-3,12-diene | C29H46 | 394 | 1 |
Chemical Class | Retention Time | Area | Area % | Compound Name | Molecular Formula | Molecular Weight, g/mol | N Violations |
Carboxylic ester | 8.134 | 83,253 | 0.47 | 4-tert-butylcyclohexyl acetate | C12H22O2 | 198 | 0 |
Diterpene | 14.715 | 156,057 | 0.89 | Neophytadiene | C20H38 | 278 | 1 |
15.822 | 113,913 | 0.65 | Biformene | C20H32 | 272 | 1 | |
17.387 | 1,146,616 | 6.54 | Abieta-7,13-diene | C20H32 | 272 | 1 | |
17.823 | 192,602 | 1.10 | Verticiol | C20H34O | 290 | 1 | |
17.888 | 656,202 | 3.74 | Agathadiol | C20H34O2 | 306 | 0 | |
17.972 | 93,879 | 0.54 | Neoabietadiene | C20H32 | 272 | 1 | |
18.375 | 156,065 | 0.89 | Isodextropimaraldehyde | C20H30O | 286 | 1 | |
18.630 | 64,779 | 0.37 | Palustrinal | C20H30O | 286 | 1 | |
18.755 | 172,913 | 0.99 | Levopimarate | C21H32O2 | 316 | 1 | |
18.953 | 86,383 | 0.49 | Abieta-8,11,13-trien-18-a | C20H28O | 284 | 1 | |
19.317 | 1,296,637 | 7.39 | Abietinol | C20H32O | 288 | 1 | |
19.924 | 113,206 | 0.65 | Neo abietal | C20H30O | 286 | 1 | |
Ergostane steroids | 26.549 | 85,471 | 0.49 | Ergost-5-en-3-ol, (3.β.,24r)- | C28H48O | 400 | 1 |
Fatty acids | 22.477 | 212,007 | 1.21 | Galaxolide | C14H26O4 | 258 | 0 |
16.674 | 166,324 | 0.95 | Tetradecanedioic acid, 3-oxo-, dimethyl ester | C16H28O5 | 300 | 0 | |
Fatty acid ester | 17.334 | 162,807 | 0.93 | 9-octadecenoic acid, methyl ester | C19H36O2 | 296 | 1 |
17.562 | 152,150 | 0.87 | Methyl stearate | C19H38O2 | 298 | 1 | |
15.693 | 1,029,561 | 5.87 | Hexadecanoic acid, methyl ester | C17H34O2 | 270 | 1 | |
Fatty alcohol | 14.820 | 30,242 | 0.17 | 1-tetradecanol | C14H30O | 214 | 1 |
Organic hetero tricyclic | 14.883 | 279,538 | 1.59 | Hexamethyl-pyranoindane | C18H26O | 258 | 1 |
Phytosterol | 25.240 | 256,252 | 1.46 | Stigmast-5-en-3-ol, (3.β.)- | C29H50O | 414 | 1 |
26.801 | 190,485 | 1.09 | Stigmasterol | C29H48O | 412 | 1 | |
27.474 | 299,140 | 1.71 | γ-sitosterol | C29H50O | 414 | 1 | |
Polycyclic aromatic hydrocarbons | 7.360 | 378,839 | 2.16 | Azulene | C10H8 | 128 | 0 |
PUFA | 17.288 | 128,833 | 0.73 | Verticillol | C18H32O2 | 280 | 1 |
Sesquiterpene | 9.534 | 170,825 | 0.97 | Β -elemene | C15H24 | 204 | 1 |
8.776 | 100,393 | 0.57 | Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 | C15H24 | 204 | 1 | |
9.729 | 140,414 | 0.80 | Cyperene | C15H24 | 204 | 0 | |
10.053 | 580,731 | 3.31 | Germacrene b | C15H24 | 204 | 1 | |
10.767 | 217,949 | 1.24 | Germacrene d | C15H24 | 204 | 1 | |
10.974 | 488,025 | 2.78 | Cedrelanol | C15H26O | 222 | 0 | |
11.263 | 41,022 | 0.23 | Cubebol | C15H26O | 222 | 0 | |
11.962 | 6,051,885 | 34.51 | Germacrene d-4-ol | C15H26O | 222 | 0 | |
13.393 | 347,188 | 1.98 | Shyobunol | C15H26O | 222 | 1 | |
14.253 | 86,532 | 0.49 | Abietinal | C15H26O | 222 | 0 | |
18.557 | 55,406 | 0.32 | 10,11-dihydroxy-3,7,11-trimethyl-2,6-dodecadienyl acetate | C17H30O4 | 298 | 0 | |
Steroid | 13.979 | 599,432 | 3.42 | Ergostane-5,25-diol | C39H76O6Si3 | 724 | 2 |
Tetralins | 14.990 | 191,432 | 1.09 | Tonalid | C18H26O | 258 | |
Triterpenoid | 16.499 | 136,199 | 0.78 | Manool oxide | C20H34O | 290 | 1 |
14.190 | 78,086 | 0.45 | 7-dimethyl(chloromethyl)silyloxytridecane | C16H35ClOSi | 306 | 1 | |
21.061 | 323,290 | 1.84 | Bis(2-ethylhexyl) phthalate | C24H38O4 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnaneswari, M.D.; Christybapita, D.; Sharma, S.; Tyagi, S.; Michael, R.D.; Aiya Subramani, P. Differential Immunostimulatory Effects of Hydrophilic and Hydrophobic Solanum trilobatum Fractions in Tilapia. Biology 2025, 14, 1333. https://doi.org/10.3390/biology14101333
Gnaneswari MD, Christybapita D, Sharma S, Tyagi S, Michael RD, Aiya Subramani P. Differential Immunostimulatory Effects of Hydrophilic and Hydrophobic Solanum trilobatum Fractions in Tilapia. Biology. 2025; 14(10):1333. https://doi.org/10.3390/biology14101333
Chicago/Turabian StyleGnaneswari, M. Divya, D. Christybapita, Smriti Sharma, Shivani Tyagi, R. Dinakaran Michael, and Parasuraman Aiya Subramani. 2025. "Differential Immunostimulatory Effects of Hydrophilic and Hydrophobic Solanum trilobatum Fractions in Tilapia" Biology 14, no. 10: 1333. https://doi.org/10.3390/biology14101333
APA StyleGnaneswari, M. D., Christybapita, D., Sharma, S., Tyagi, S., Michael, R. D., & Aiya Subramani, P. (2025). Differential Immunostimulatory Effects of Hydrophilic and Hydrophobic Solanum trilobatum Fractions in Tilapia. Biology, 14(10), 1333. https://doi.org/10.3390/biology14101333