A Digital PCR Assay to Quantify the Percentages of Hulled vs. Hulless Wheat in Flours and Flour-Based Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methods
2.2.1. DNA Extraction
2.2.2. Chip Digital PCR
2.2.3. Hulless Wheat Percentage Calculation
- The C allele, marked with VIC, is present in miRNA172 target site of the AP2-5 transcription factor localized on chromosome 5A in hulled wheats;
- The T allele, marked with FAM, is present in miRNA172 target site of the AP2-5 transcription factor localized on chromosome 5A in hulless wheats;
- The C allele is present in miRNA172 target site homoeologous regions of chromosome 5B and 5D in all wheats.
2.2.4. Real-Time PCR
3. Results
3.1. Mono-Species Samples
3.2. Mixed-Species Samples
3.3. Commercial Samples
3.4. Specificity
3.5. Real-Time PCR Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harlan, J.R.; Zohary, D. Distribution of wild wheats and barley. Science 1966, 153, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, M.; Samuel, D. From Staple Crop to Extinction? The Archaeology and History of the Hulled Wheats. In Proceedings of the First International Workshop on Hulled Wheats Castelvecchio Pascoli, Tuscany, Italy, 21–22 July 1995; Padulosi, S., Hammer, K., Heller, J., Eds.; IPGRI: Rome, Italy, 1996; Volume 4, pp. 41–100. [Google Scholar]
- Zaharieva, M.; Monneveux, P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genet. Resour. Crop. Evol. 2014, 61, 677–706. [Google Scholar] [CrossRef]
- Zaharieva, M.; Geleta Ayana, N.; Al Hakimi, A.; Misra, S.C.; Monneveux, P. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: A review. Genet. Resour. Crop. Evol. 2010, 57, 937–962. [Google Scholar] [CrossRef]
- Stallknecht, G.F.; Gilbertson, K.M.; Ranney, J.E. Alternative wheat cereals as food grains: Einkorn, emmer, spelt, kamut, and triticale. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1996; pp. 156–170. [Google Scholar]
- Damania, A.B. Domestication of cereal crop plant and in situ conservation of their genetic resources in the Fertile Crescent. In The Origin of Agriculture and Crop Domestication; Damania, A.B., Valkoun, J., Willcox, G., Qualset, C.O., Eds.; ICARDA: Aleppo, Syrian Arab Republic, 1996; pp. 307–316. [Google Scholar]
- Blatter, R.H.E.; Jacomet, S.; Schlumbaum, A. About the origin of European spelt (Triticum spelta L.): Allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor. Appl. Genet. 2004, 108, 360–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubadda, R.; Marconi, E. Spelt Wheat. In Pseudocereals and Less Common Cereals; Springer: Berlin/Heidelberg, Germany, 2002; pp. 153–175. [Google Scholar] [CrossRef]
- Perrino, P.; Hammer, K. Triticum monococcum L. and T. dicoccum Schübler (syn. of T. dicoccon Schrank) are still cultivated in Italy. Genet. Agrar. 1982, 36, 343–354. [Google Scholar]
- Porfiri, O.; Papa, R.; Veronesi, F. Il farro nel rilancio delle aree marginali umbro-marchigiane. In Il Farro, Saperi, Usi e Conservazione delle Varieta’ Locali; Papa, C., Ed.; Quaderni del CEDRAV: Perugia, Italy, 1998; Volume 1, pp. 58–67. [Google Scholar]
- Laghetti, G.; Fiorentino, G.; Hammer, K.; Pignone, D. On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: A mission impossible? Genet. Resour. Crop. Evol. Genet. 2009, 56, 1163–1170. [Google Scholar] [CrossRef]
- De Vita, P.; Riefolo, C.; Codianni, P.; Cattivelli, L.; Fares, C. Agronomic and qualitative traits of T. turgidum ssp. dicoccum genotypes cultivated in Italy. Euphytica 2006, 150, 195–205. [Google Scholar] [CrossRef]
- Available online: https://www.agerborsamerci.it/listino/listino.html (accessed on 15 September 2021).
- Ruibal-Mendieta, N.L.; Dekeyser, A.; Delacroix, D.L.; Mignolet, E.; Larondelle, Y.; Meurens, M. The oleate/palmitate ratio allows the distinction between wholemeals of spelt (Triticum spelta L.) and winter wheat (T. aestivum L.). J. Cereal Sci. 2004, 39, 413–415. [Google Scholar] [CrossRef]
- Asakura, N.; Mori, N.; Nakamura, C.; Ohtsuka, I. Genotyping of the Q locus in wheat by a simple PCR-RFLP method. Genes Genet. Syst. 2009, 84, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, F.; Haase, I.; Graubner, A.; Heising, F.; Paschke-Kratzin, A.; Fischer, M. Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J. Agric. Food Chem. 2012, 60, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Voorhuijzen, M.; van Dijk, J.; Prins, T.; Van Hoef, A.; Seyfarth, R.; Kok, E. Development of a multiplex DNA-based traceability tool for crop plant materials. Anal. Bioanal. Chem. 2012, 402, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Bönick, J.; Huschek, G.; Rawel, H.M. Determination of wheat, rye and spelt authenticity in bread by targeted peptide biomarkers. J. Food Compos. Anal. 2017, 58, 82–91. [Google Scholar] [CrossRef]
- Silletti, S.; Morello, L.; Gavazzi, F.; Gianì, S.; Braglia, L.; Breviario, D. Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Food Chem. 2019, 271, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Curzon, A.Y.; Chandrasekhar, K.; Nashef, Y.K.; Abbo, S.; Bonfil, D.S.; Reifen, R.; Bar-el, S.; Avneri, A.; Ben-David, R. Distinguishing between Bread Wheat and Spelt Grains Using Molecular Markers and Spectroscopy. J. Agric. Food Chem. 2019, 67, 3837–3841. [Google Scholar] [CrossRef]
- Foschi, M.; Biancolillo, A.; Vellozzi, S.; Marini, F.; D’Archivio, A.A.; Boqué, R. Spectroscopic fingerprinting and chemometrics for the discrimination of Italian Emmer landraces. Chemom. Intell. Lab. Syst. 2021, 215, 104348. [Google Scholar] [CrossRef]
- Köppel, R.; Guertler, P.; Waiblinger, H.-H. Duplex droplet digital PCR (ddPCR) method for the quantification of common wheat (Triticum aestivum) in spelt (Triticum spelta). Food Control 2021, 130, 108382. [Google Scholar] [CrossRef]
- Nilson-Ehle, H. Untersuchungen uber speltoid mutationen beim weizen. Bot. Not. 1917, 305–329. [Google Scholar]
- Simons, K.J.; Fellers, J.P.; Trick, H.N.; Zhang, Z.; Tai, Y.S.; Gill, B.S.; Faris, J.D. Molecular characterization of the major wheat domestication gene Q. Genetics 2006, 172, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Chuck, G.; Meeley, R.; Irish, E.; Sakai, H.; Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 2007, 39, 1517–1521. [Google Scholar] [CrossRef]
- Debernardi, J.M.; Lin, H.; Chuck, G.; Faris, J.D.; Dubcovsky, J. MicroRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 2017, 144, 1966–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2021-02-27&atto.codiceRedazionale=21G00022&elenco30giorni=true (accessed on 26 October 2021).
- Quan, P.L.; Sauzade, M.; Brouzes, E. dPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Košir, A.B.; Spilsberg, B.; Holst-Jensen, A.; Zel, J.; Dobnik, D. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci. Rep. 2017, 7, 8601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CXG 74-2010 Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods 2010. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/ (accessed on 15 September 2021).
- ENGL, European Network of GMO Laboratories. Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. 2015. Available online: http://gmocrl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 15 September 2021).
- Morcia, C.; Bergami, R.; Scaramagli, S.; Ghizzoni, R.; Carnevali, P.; Terzi, V. A Chip Digital PCR Essay for Quantification of Common Wheat Contamination in Pasta Production Chain. Foods 2020, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 14 September 2021).
Analytical Target | Method | Reference |
---|---|---|
Spelt | Fatty acids profile | [14] |
Triticum species | PCR-RFLP (Q-locus) | [15] |
Spelt | RLP-LOC-CE, Real-time PCR (γ-gliadin) | [16] |
Farro della Garfagnana in cereal mixtures | padlock probe ligation and multiplex microarray | [17] |
Spelt | LC-MS peptide markers identification | [18] |
Einkorn, emmer and spelt | tubulin-based polymorphism (TBP) | [19] |
Spelt | PCR (γ-gliadin, Q-locus); NIR | [20] |
Italian emmer landraces | Spectroscopy and chemometrics | [21] |
Spelt | Duplex droplet digital PCR (Q-locus) | [22] |
Botanical Species | Variety | Maintainers |
---|---|---|
Triticum monococcum L. | Antenato | A,B |
Triticum monococcum L. | Hammurabi | A,B |
Triticum monococcum L. | Monili | A,B |
Triticum monococcum L. | Monlis | B,C |
Triticum monococcum L. | Norberto | A,B |
Triticum dicoccum Schubler | Augeo | E |
Triticum dicoccum Schubler | Farvento | D |
Triticum dicoccum Schubler | Giovanni Paolo | B |
Triticum dicoccum Schubler | Hervillum | E |
Triticum dicoccum Schubler | Padre Pio | B |
Triticum dicoccum Schubler | Rosso Rubino | C |
Triticum dicoccum Schubler | Yakub | C |
Triticum dicoccum Schubler | Zefiro | C |
Triticum dicoccum Schubler | Sephora | - |
Triticum spelta L. | Benedetto | A,B |
Triticum spelta L. | Forenza | D |
Triticum spelta L. | Giuseppe | A,B |
Triticum spelta L. | Maddalena | B |
Triticum spelta L. | Pietro | A,B |
Triticum spelta L. | Rita | B |
Triticum spelta L. | Rossella | B |
Triticum durum | Aureo | F |
Triticum durum | Iride | F |
Triticum durum | Cappelli | B,G |
Triticum aestivum | Apulia | B |
Triticum aestivum | Bologna | G |
Triticum aestivum | Palesio | G |
Wheat Species and Threshing Habit | Chromosome 5A miR172 Target Site | Chromosome 5B miR172 Target Site | Chromosome 5D miR172 Target Site |
---|---|---|---|
Einkorn Non-free-threshing (GenBank MK101270.1) | gct gca gca tca tca gga ttc tct | - | - |
Emmer Non-free-threshing (GenBank MK493450.1) | gct gca gca tca tca gga ttc tct | gct gca gca tca tca gga ttc tct | - |
Spelt Non-free-threshing (GenBank MK450625.1) | gct gca gca tca tca gga ttc tct | gct gca gca tca tca gga ttc tct | gct gca gca tca tca gga ttc tct |
Durum wheat Free-threshing (GenBank KY924305.1) | gct gca gca tca tca gga ttt tct | gct gca gca tca tca gga ttc tct | - |
Common wheat Free-threshing (GenBank JF701619.1) | gct gca gca tca tca gga ttt tct | gct gca gca tca tca gga ttc tct | gct gca gca tca tca gga ttc tct |
Nominal Hulled to Hulless Ratio in Mixed Samples | Measured Hulless Wheat Percentage | Absolute Error | Relative Error |
---|---|---|---|
80% einkorn, 20% durum wheat | 20% | 0 | - |
80% emmer, 20% durum wheat | 25% | 5 | 0.20 |
80% spelt, 20% durum wheat | 24% | 4 | 0.16 |
50% einkorn, 50% durum wheat | 50% | 0 | - |
50% emmer, 50% durum wheat | 55% | 5 | 0.09 |
50% spelt, 50% durum wheat | 50% | 0 | - |
40% einkorn, 60% durum wheat | 55% | 5 | 0.09 |
40% emmer, 60% durum wheat | 69% | 9 | 0.13 |
40% spelt, 60% durum wheat | 64% | 4 | 0.06 |
50% einkorn, 50% common wheat | 48% | 2 | 0.04 |
50% emmer, 50% common wheat | 52% | 2 | 0.04 |
50% spelt, 50% common wheat | 54% | 4 | 0.07 |
Commercial Sample | Cereal Formulation in the Label | Farro % (dPCR Determined by CREA Lab) | Farro % (dPCR Determined by CoopItalia Lab) |
---|---|---|---|
Cookie 1 | Farro 54%, common wheat | 54% | 56% |
Breakfast cereals | Whole farro flakes 100% | 100% | 97% |
Pearled farro | Farro 100% | 100% | 100% |
Bread substitute 1 | Farro 99.8% | 99% | 99% |
Mix for bread making | Whole farro flour 7%, common wheat flour 93% | 25% | 25% |
Flour | Spelt flour | 90% | 91% |
Bread substitute 2 | Common wheat flour, common wheat flakes 5.1%, toasted wheat bran, whole farro flour 2.1%, malted common wheat flour | 7% | 0% |
Pasta | Farro flour | 78% | 76% |
Egg pasta | Farro flour 80.64% | 81% | 83% |
Bread substitute 3 | Common wheat flour, farro flour 30.4%, malt, oat flakes | 25% | 25% |
Cookie 2 | Farro flour | 100% | 100% |
Baby food | Farro 100% | 100% | 100% |
Commercial Sample | Cereal Formulation in the Label | Farro % qPCR Determined |
---|---|---|
Cookie 1 | Farro 54%, common wheat | 58% |
Breakfast cereals | Whole farro flakes 100% | 100% |
Pearled farro | Farro 100% | 100% |
Bread substitute 1 | Farro 99.8% | 100% |
Mix for bread making | Whole farro flour 7%, common wheat flour 93% | 0% |
Flour | Spelt flour | 95% |
Bread substitute 2 | Common wheat flour, common wheat flakes 5.1%, toasted wheat bran, whole farro flour 2.1%, malted common wheat flour | 0% |
Pasta | Farro flour | 90% |
Egg pasta | Farro flour 80.64% | 94% |
Bread substitute 3 | Common wheat flour, farro flour 30.4%, malt, oat flakes | 27% |
Cookie 2 | Farro flour | 100% |
Baby food | Farro 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcia, C.; Bergami, R.; Scaramagli, S.; Delogu, C.; Andreani, L.; Carnevali, P.; Tumino, G.; Ghizzoni, R.; Terzi, V. A Digital PCR Assay to Quantify the Percentages of Hulled vs. Hulless Wheat in Flours and Flour-Based Products. Biology 2021, 10, 1138. https://doi.org/10.3390/biology10111138
Morcia C, Bergami R, Scaramagli S, Delogu C, Andreani L, Carnevali P, Tumino G, Ghizzoni R, Terzi V. A Digital PCR Assay to Quantify the Percentages of Hulled vs. Hulless Wheat in Flours and Flour-Based Products. Biology. 2021; 10(11):1138. https://doi.org/10.3390/biology10111138
Chicago/Turabian StyleMorcia, Caterina, Raffaella Bergami, Sonia Scaramagli, Chiara Delogu, Lorella Andreani, Paola Carnevali, Giorgio Tumino, Roberta Ghizzoni, and Valeria Terzi. 2021. "A Digital PCR Assay to Quantify the Percentages of Hulled vs. Hulless Wheat in Flours and Flour-Based Products" Biology 10, no. 11: 1138. https://doi.org/10.3390/biology10111138
APA StyleMorcia, C., Bergami, R., Scaramagli, S., Delogu, C., Andreani, L., Carnevali, P., Tumino, G., Ghizzoni, R., & Terzi, V. (2021). A Digital PCR Assay to Quantify the Percentages of Hulled vs. Hulless Wheat in Flours and Flour-Based Products. Biology, 10(11), 1138. https://doi.org/10.3390/biology10111138