The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Location
2.2. Weather Measurement and Temperature Humidity Index (THI) Estimation
2.3. Animals, Diets, and Sample Analyses
- (1)
- no eubiotics (Control);
- (2)
- 3 g of live Saccharomyces cerevisiae/lamb/day (2 × 1010 cfu/g; SC; Active Flora, ICC, São Paulo, Brazil);
- (3)
- 3 g of mannan oligosaccharide plus b-glucans/lamb/day (MOS; 15% mannan oligosaccharide plus 25% b-glucans, w/w, Rumen Yeast, ICC, São Paulo, Brazil);
- (4)
- 1.5 g/lamb/day SC plus 1.5 g/lamb/day MOS (SC+MOS).
Treatments | ||||
---|---|---|---|---|
Item | Control | SC 1 | MOS 2 | SC+MOS 3 |
Ingredient composition (%) | ||||
Sudan hay | 10.00 | 10.00 | 10.00 | 10.00 |
Cracked corn | 70.00 | 70.00 | 70.00 | 70.00 |
Soybean meal | 9.50 | 9.50 | 9.50 | 9.50 |
Active Flora® | 0 | ++ | 0 | ++ |
Rumen Yeast® | 0 | 0 | ++ | ++ |
Molasses cane | 5.00 | 5.00 | 5.00 | 5.00 |
Yellow grease | 3.00 | 3.00 | 3.00 | 3.00 |
Protein–mineral premix 4 | 2.50 | 2.50 | 2.50 | 2.50 |
Chemical composition (%DM basis) 5 | ||||
Crude protein | 13.43 | 13.43 | 13.43 | 13.43 |
Starch | 52.91 | 52.91 | 52.91 | 52.91 |
Neutral detergent fiber | 15.13 | 15.13 | 15.13 | 15.13 |
Ash | 5.87 | 5.87 | 5.87 | 5.87 |
Gross energy, Mcal/kg | 4.17 | 4.17 | 4.17 | 4.17 |
Calculated net energy (Mcal/kg) 6 | ||||
Maintenance | 2.15 | 2.15 | 2.15 | 2.15 |
Gain | 1.49 | 1.49 | 1.49 | 1.49 |
2.4. Calculations
2.5. Carcass Characteristics, Whole Cuts, and Shoulder Tissue Composition
2.6. Visceral Mass Data
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barreras, A.; Castro-Pérez, B.I.; López-Soto, M.A.; Torrentera, N.G.; Montaño, M.F.; Estrada-Angulo, A.; Ríos, F.G.; Dávila-Ramos, H.; Plascencia, A.; Zinn, R.A. Influence of ionophore supplementation on growth performance, dietary energetics and carcass characteristics in finishing cattle during period of heat stress. Asian-Australas. J. Anim. Sci. 2013, 26, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic resistance genes from livestock waste: Ocurrence, disemination, and treatment. Npj Clean Water 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Díaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanism of action of probiotics. Adv. Nutr. 2019, 10, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Direkvandi, E.; Mohammadabadi, T.; Salem, A.Z.M. Oral administration of lactate producing bacteria alone or combined with Saccharomyces cerevisiae and Megasphaera elsdenii on performance of fattening lambs. J. Appl. Anim. Res. 2020, 48, 235–243. [Google Scholar] [CrossRef]
- Nawab, A.; Liu, W.; Li, G.; Ibtisham, F.; Fox, D.; Zhao, Y.; Wo, J.; Xiao, M.; Nawab, Y.; An, L. The Potential Role of Probiotics (nutraceuticals) in Gut Health of Domestic Animals; an Alternative to Antibiotic Growth Promoters. J. Hellenic Vet. Med. Soc. 2019, 69, 1169–1188. [Google Scholar] [CrossRef] [Green Version]
- Radzikowski, D. Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. WSN 2017, 78, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Zapata, O.; Cervantes, A.; Barreras, A.; Monge-Navarro, F.; González-Vizcarra, V.M.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Corono, L.; Zinn, R.A.; Martínez-Alvarez, I.G.; et al. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Rum. Res. 2021, 204, 106538. [Google Scholar] [CrossRef]
- Kleniewska, P.; Pawliczak, R.B. Influence of Synbiotics on Selected Oxidative Stress. Oxid. Med. Cell Longev. 2017, 2017, 9315375. [Google Scholar]
- López-Valencia, G.; Zapata-Ramírez, O.; Núñez-González, L.; Núñez-Benítez, V.; Landeros-López, H.; López-Soto, M.A.; Barreras, A.; González, V.; Estrada-Angulo, A.; Zinn, R.A.; et al. Effective use of probiotic-glyconutrient combination as an adjuvant to antibiotic therapy for diarrhea in rearing dairy calves. Turk. J. Vet. Anim. Sci. 2017, 41, 578–581. [Google Scholar] [CrossRef]
- Zheng, C.; Li, F.; Hao, Z.; Liu, T. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity, and antioxidant capacity of sheep. J. Anim. Sci. 2018, 96, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NOM. Normas Oficiales Mexicanas. Diario Oficial de la Federación. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio. 1995. Available online: http://dof.gob.mx/ (accessed on 7 August 2020).
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of Official Analytical Chemists. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Small Ruminant: Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Canton, G.J.; Bores, Q.R.; Baeza, R.J.; Quintal, F.J.; Santos, R.R.; Sandoval, C.C. Growth and feed efficiency of pure and f1 pelibuey lambscrossbred with specialized breeds for production of meat. J. Anim. Vet. Adv. 2009, 8, 26–32. Available online: https://www.medwelljournals.com/abstract/?doi=javaa.2009.26.32 (accessed on 9 February 2021).
- Official United States Standards for Grades of Carcass Lambs. Yearling Mutton and Mutton Carcasses; United States Department of Agriculture (USDA): Washington, DC, USA, 1992.
- North American Meat Processor Association. Meat Buyers Guide; John Willey and Sons, Inc. (NAMP): Hoboken, NJ, USA, 2007. [Google Scholar]
- Luaces, M.L.; Calvo, C.; Fernández, B.; Fernández, A.; Viana, J.L.; Sánchez, L. Predicting equation for tisular composition in carcass of Gallega breed lambs. Arch. Zoot. 2019, 57, 3–14. [Google Scholar]
- Statistical Analytical System. Institute Inc. SAS Proprietary Software Release 9.3; SAS Institute Inc. (SAS): Cary, NC, USA, 2004. [Google Scholar]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mehanna, S.F.; Abdelsalam, M.M.; Hashem, N.M.; El-Azrak, K.E.M.; Mansour, M.M.; Zeitoun, M.M. Relevance of probiotic, prebiotic and synbiotic supplementations on hemato-biochemical parameters, metabolic hormones, biometric measurements and carcass characteristics of sub-tropical Noemi lambs. Int. J. Anim. Res. 2017, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of the extensively managed domestic ruminants. Livest. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Habebb, A.A.; Gad, A.E.; Atta, M.A. Temperature-humidity index as indicators to stress of climatic conditions with relation to production and reproduction of farm animals. Int. J. Biotechnol. Res. Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Romero, R.D.; Montero-Pardo, A.; Montaldo, H.H.; Rodriguez, A.D.; Hernández-Cerón, J. Differences in body temperature, cell viability and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress. Trop. Anim. Health Prod. 2013, 45, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Macías-Cruz, U.; Avendaño-Reyes, L.; Álvarez-Valenzuela, F.D.; Torrentera-Olivera, N.G.; Meza-Herrera, C.A.; Mellado-Bosque, M.; Correa-Calderón, A. Crecimiento y características de canal en corderas tratadas con clorhidrato de zilpaterol durante primavera y verano. Rev. Mex. Cienc. Pecu. 2013, 4, 1–12. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242013000100001 (accessed on 9 February 2021).
- Vicente-Pérez, V.R.; Macías-Cruz, U.; Avendaño-Reyes, L.; Correa-Calderón, A.; López-Vaca, M.A.; Lara-Rivera, A.L. Heat stress impacts in hair sheep production. Rev. Mex. Cienc. Pecu. 2020, 11, 205–222. [Google Scholar] [CrossRef]
- O’Brien, M.D.; Rhoads, R.P.; Sanders, S.R.; Duff, G.C.; Baumgard, H. Metabolic adaptation to heat stress in growing cattle. Domest. Anim. Endocrinol. 2010, 38, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nicolás-López, P.; Macías-Cruz, U.; Mellado, M.; Correa-Calderón, A.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Growth performance and changes in physiological, metabolic and hematological parameters due to outdoor heat stress in hair breed male lambs finished in feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; Saavedra, O.R.; Correa-Calderón, A.; Mellado, M.; Torrentera, N.G.; Chay-Canul, A.; López-Baca, M.A.; Avendaño-Reyes, L. Feedlot growth, carcass characteristics and meat quality of hair breed lambs exposed to seasonal heat stress (winter vs. summer) in an arid climate. Meat Sci. 2020, 169, 108202. [Google Scholar] [CrossRef]
- Saleem, A.M.; Zanouny, A.I.; Singer, A.M. Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period. Asian-Australas. J. Anim. Sci. 2017, 30, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Gado, H.; Anele, U.Y.; Berasain, M.A.M.; Salem, A.Z.M. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs. Anim. Biotechnol. 2020, 31, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Anadón, A.; Ares, I.; Martínez-Larrañaga, M.R.; Martínez, M.A. Prebiotics and probiotics in feed and animal health. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer AG: Cham, Switzerland, 2019; pp. 261–285. [Google Scholar]
- Moarrab, A.; Ghoorchi, T.; Ramezanpour, S.; Ganji, F.; Koochakzadeh, A.R. Effect of synbiotic on performance, intestinal morphology, fecal microbial population and blood metabolites of suckling lambs. Iran. J. Anim. Sci. 2016, 6, 621–628. Available online: http://ijas.iaurasht.ac.ir/article_524633.html (accessed on 9 February 2021).
- Ayala-Monter, M.A.; Hernández-Sánchez, D.; González-Muñoz, S.; Pinto-Ruiz, R.; Martínez-Aispuro, J.A.; Torres-Salado, N.; Herrera-Pérez, J.; Gloria-Trujillo, A. Growth performance and health of nursing lambs supplemented with inulin and Lactobacillus casei. Asian-Australas. J. Anim. Sci. 2019, 32, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Jonova, S.; Ilgaza, A.; Zolovs, M.; Balins, A. Impact of inulin and yeast containing synbiotic on calves’ productivity and greenhouse gas production. Vet. World 2020, 13, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A Review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Omari, M.; Lange, A.; Plöntzke, J.; Röblitz, S. Model-based exploration of the impact of glucose metabolism on the estrous cycle dynamics in dairy cows. Biol. Direct 2020, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Effect of Environment on Nutrient Requirements of Domestic Animals (NRC); National Academy Press: Washington, DC, USA, 1981. [Google Scholar]
- Whitley, N.C.; Cazac, D.; Rude, B.J.; Jackson-O’Obrien, D.; Parveen, S. Use of commercial probiotic supplement in meat goats. J. Anim. Sci. 2009, 87, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anele, U.Y.; Engel, C.L.; Swanson, K.C.; Baines, D. Effects of synbiotics on rumen fermentation. J. Anim. Sci. 2017, 95 (Suppl. 4), 300–301. [Google Scholar] [CrossRef] [Green Version]
- Sosa, A.; Saro, C.; Mateos, I.; Díaz, A.; Galindo, J.; Carro, M.D.; Ranilla, M.J. Effects of Aspergillus oryzae on ruminal fermentation of an alfalfa hay: Concentrate diet using the rumen simulation technique (Rusitec). Cuban J. Agric. Sci. 2020, 54, 183–192. Available online: https://www.redalyc.org/pdf/1930/193015662010.pdf (accessed on 9 February 2021).
- Zerby, H.N.; Bard, J.L.; Loerch, S.C.; Kuber, P.S.; Radunz, A.E.; Fluharty, F.L. Effects of diet and Aspergillus oryzae extract or Saccharomyces cervisiae on growth and carcass characteristics of lambs and steers fed to meet requirements of natural markets. J. Anim. Sci. 2011, 89, 2257–2264. [Google Scholar] [PubMed]
- Ladeira, M.M.; Schoonmaker, J.P.; Swanson, K.C.; Duckett, S.K.; Gionbelli, M.P.; Rodrigues, L.M.; Teixeira, P.D. Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat. Animal 2018, 12, 282–294. [Google Scholar] [CrossRef] [Green Version]
- Belewu, M.A.; Jimoh, N.O. Blood, Carcass and organ measurement as influenced by Aspergillus niger treated cassava wastes in the diets of WAD goats. Glob. J. Agric. Sci. 2005, 4, 125–128. [Google Scholar]
- Raghebian, M.; Dabiri, N.; Yazdi, A.B.; Bahrani, M.J.; Shomeyzi, J.; Raghebian, A.; Hatami, P. Probiotic effect on meat quality and carcass parameters of iranian Zandi lambs. J. Livest. Sci. 2017, 8, 163–168. Available online: http://livestockscience.in/wp-content/uploads/energyheatstrssbrooilrIran.pdf (accessed on 7 May 2021).
- Alayande, K.A.; Aiyegoro, O.A.; Ateba, C.N. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Al-Baadani, H.H.; Abusabos, A.M.; Al-Mufarrej, S.I.; Alzawqari, M. Effects of dietary inclusion of probiotics and symbiotics on intestinal histological changes in challenged broiler chickens. S. Afr. J. Anim. Sci. 2016, 46, 157–165. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, T.; Branco, A.F.; Jacovaci, F.A.; Jobim, C.C.; Daniel, J.L.P.; Bueno, A.V.; Ribeiro, M.G. Use of live yeast and mannan-oligosacharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE 2018, 13, e0207127. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef]
Week | Mean Ta (°C) | Min Ta (°C) | Max Ta (°C) | Mean RH (%) | Min RH (%) | Max RH (%) | Mean THI 1 | Min THI | Max THI |
---|---|---|---|---|---|---|---|---|---|
1 | 29.09 ± 0.9 | 24.56 ± 1.4 | 33.62 ± 0.5 | 39.70 ± 1.2 | 25.18 ± 0.3 | 54.21 ± 2.7 | 76.45 ± 0.8 | 66.86 ± 1.5 | 84.05 ± 1.5 |
2 | 28.01 ± 1.0 | 22.91 ± 1.3 | 33.10 ± 0.8 | 40.04 ± 1.3 | 24.89 ± 0.8 | 55.18 ± 2.4 | 75.30 ± 0.9 | 67.08 ± 1.4 | 83.53 ± 0.9 |
3 | 28.46 ± 1.1 | 22.67 ± 0.9 | 34.24 ± 0.3 | 37.09 ± 1.7 | 26.50 ± 0.2 | 47.68 ± 2.6 | 75.27 ± 1.0 | 66.96 ± 0.9 | 83.59 ± 0.6 |
4 | 27.98 ± 0.9 | 22.84 ± 0.7 | 33.12 ± 0.3 | 44.14 ± 2.6 | 27.14 ± 0.8 | 61.14 ± 2.7 | 75.93 ± 0.8 | 67.19 ± 0.8 | 84.67 ± 0.5 |
5 | 29.76 ± 1.0 | 23.23 ± 0.9 | 36.29 ± 0.3 | 40.83 ± 1.7 | 24.86 ± 0.3 | 56.79 ± 3.5 | 77.89 ± 0.9 | 67.41 ± 1.0 | 88.23 ± 0.7 |
6 | 30.36 ± 0.9 | 24.49 ± 0.9 | 36.24 ± 0.4 | 39.59 ± 1.8 | 25.61 ± 0.8 | 53.57 ± 3.6 | 78.14 ± 0.8 | 68.82 ± 1.0 | 84.98 ± 0.6 |
7 | 31.14 ± 0.9 | 25.44 ± 1.0 | 36.84 ± 0.4 | 38.73 ± 1.5 | 26.18 ± 0.6 | 51.28 ± 2.4 | 78.82 ± 0.8 | 69.90 ± 1.0 | 87.45 ± 0.5 |
8 | 31.89 ± 0.7 | 27.64 ± 0.9 | 36.14 ± 0.6 | 38.36 ± 1.7 | 25.14 ± 0.6 | 51.57 ± 3.7 | 79.50 ± 0.5 | 72.12 ± 0.9 | 87.75 ± 0.7 |
9 | 31.82 ± 0.8 | 26.66 ± 0.9 | 36.97 ± 0.3 | 38.45 ± 2.0 | 25.29 ± 0.6 | 51.61 ± 2.9 | 79.55 ± 0.7 | 71.10 ± 0.9 | 86.88 ± 0.5 |
10 | 32.03 ± 1.7 | 26.61 ± 0.9 | 36.46 ± 0.4 | 37.43 ± 1.7 | 26.07 ± 0.9 | 48.79 ± 3.4 | 79.56 ± 1.8 | 71.14 ± 1.0 | 87.99 ± 0.5 |
11 | 33.31 ± 0.7 | 29.45 ± 0.7 | 37.18 ± 0.3 | 41.29 ± 1.7 | 27.68 ± 0.9 | 54.89 ± 2.3 | 81.72 ± 0.5 | 74.42 ± 0.8 | 89.02 ± 0.4 |
12 | 33.60 ± 0.6 | 30.29 ± 0.5 | 36.90 ± 0.3 | 41.09 ± 1.9 | 28.75 ± 0.5 | 53.43 ± 2.0 | 81.91 ± 0.5 | 75.51 ± 0.6 | 88.31 ± 0.2 |
13 | 32.76 ± 0.8 | 29.93 ± 0.6 | 35.58 ± 0.9 | 46.50 ± 2.4 | 33.32 ± 2.2 | 59.68 ± 3.7 | 81.84 ± 0.6 | 75.82 ± 0.6 | 87.86 ± 1.1 |
Mean | 30.79 ± 0.5 | 25.90 ± 0.9 | 35.67 ± 0.4 | 40.25 ± 1.1 | 26.66 ± 0.8 | 53.83 ± 1.8 | 78.60 ± 0.7 | 70.49 ± 1.0 | 86.72 ± 0.7 |
Treatments 1 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Control | SC | MOS | SC+MOS | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Days on test | 93 | 93 | 93 | 93 | |||||||
Pen replicates | 5 | 5 | 5 | 5 | |||||||
Live weight, kg/day2 | |||||||||||
Initial | 29.50 | 29.52 | 29.48 | 29.57 | 0.13 | 0.91 | 0.91 | 0.70 | 0.82 | 0.78 | 0.62 |
Final | 51.99 | 51.79 | 51.86 | 54.56 | 0.80 | 0.86 | 0.90 | 0.04 | 0.95 | 0.03 | 0.03 |
Average daily gain, kg/day | 0.242 | 0.241 | 0.241 | 0.269 | 0.008 | 0.84 | 0.93 | 0.04 | 0.91 | 0.03 | 0.04 |
Dry matter intake, kg/day | 1.210 | 1.130 | 1.121 | 1.213 | 0.031 | 0.09 | 0.06 | 0.94 | 0.84 | 0.08 | 0.06 |
Feed efficiency (G:F), kg/kg | 0.201 | 0.213 | 0.216 | 0.222 | 0.004 | 0.01 | 0.01 | <0.01 | 0.36 | 0.02 | 0.12 |
Observed dietary net energy, Mcal/kg | |||||||||||
Maintenance | 2.06 | 2.16 | 2.19 | 2.22 | 0.024 | <0.01 | <0.01 | <0.01 | 0.33 | 0.04 | 0.22 |
Gain | 1.40 | 1.48 | 1.51 | 1.54 | 0.021 | <0.01 | <0.01 | <0.01 | 0.33 | 0.04 | 0.22 |
Observed to expected diet NE 2 | |||||||||||
Maintenance | 0.958 | 1.005 | 1.018 | 1.032 | 0.012 | <0.01 | <0.01 | <0.01 | 0.33 | 0.04 | 0.22 |
Gain | 0.940 | 0.993 | 1.013 | 1.034 | 0.011 | <0.01 | <0.01 | <0.01 | 0.33 | 0.04 | 0.22 |
Observed to expected DMI | 1.054 | 0.999 | 0.984 | 0.968 | 0.009 | <0.01 | <0.01 | <0.01 | 0.33 | 0.04 | 0.22 |
Treatments 1 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Control | SC | MOS | SC+MOS | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Hot carcass weight, kg | 30.37 | 30.16 | 30.07 | 31.63 | 0.65 | 0.83 | 0.75 | 0.20 | 0.92 | 0.14 | 0.12 |
Dressing percentage | 58.42 | 58.24 | 58.35 | 57.99 | 0.45 | 0.70 | 0.89 | 0.36 | 0.81 | 0.58 | 0.43 |
Cold carcass weight, kg | 29.98 | 29.73 | 29.68 | 31.22 | 0.64 | 0.78 | 0.74 | 0.20 | 0.93 | 0.15 | 0.11 |
LM area, cm2 | 21.17 | 20.72 | 20.96 | 21.46 | 0.51 | 0.58 | 0.82 | 0.63 | 0.68 | 0.24 | 0.51 |
Fat thickness 2, cm | 0.294 | 0.286 | 0.299 | 0.287 | 0.13 | 0.67 | 0.78 | 0.74 | 0.49 | 0.93 | 0.54 |
Kidney pelvic and heart fat, % | 2.88 | 2.87 | 3.17 | 3.11 | 0.07 | 0.85 | 0.02 | 0.04 | <0.01 | 0.03 | 0.52 |
Shoulder composition, % | |||||||||||
Muscle | 63.28 | 63.20 | 62.60 | 63.24 | 0.67 | 0.98 | 0.53 | 0.97 | 0.54 | 0.98 | 0.55 |
Fat | 18.50 | 18.88 | 18.26 | 18.78 | 0.60 | 0.71 | 0.78 | 0.75 | 0.53 | 0.96 | 0.55 |
Muscle-to-fat ratio | 3.45 | 3.37 | 3.50 | 3.38 | 0.15 | 0.69 | 0.83 | 0.73 | 0.54 | 0.95 | 0.58 |
Treatments 1 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Whole cuts (as % of CCW) | Control | SC | MOS | SC+MOS | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Neck | 10.55 | 10.64 | 10.61 | 10.54 | 0.45 | 0.88 | 0.93 | 0.99 | 0.96 | 0.88 | 0.91 |
Shoulder IMPS207 | 15.61 | 15.45 | 15.28 | 15.36 | 0.20 | 0.58 | 0.25 | 0.39 | 0.54 | 0.75 | 0.76 |
Shoulder IMPS206 | 8.21 | 7.68 | 7.94 | 7.91 | 0.26 | 0.11 | 0.45 | 0.41 | 0.33 | 0.35 | 0.95 |
Leg IMPS233 | 25.98 | 25.43 | 24.96 | 25.97 | 0.50 | 0.39 | 0.16 | 0.99 | 0.46 | 0.39 | 0.17 |
Loin IMPS231 | 7.46 | 7.84 | 7.40 | 7.36 | 0.24 | 0.32 | 0.87 | 0.77 | 0.25 | 0.21 | 0.90 |
Rack IMPS204 | 7.73 | 7.49 | 7.63 | 7.69 | 0.25 | 0.52 | 0.92 | 0.90 | 0.59 | 0.60 | 0.99 |
Flank IMPS232 | 6.50 | 6.59 | 6.37 | 6.27 | 0.19 | 0.74 | 0.63 | 0.41 | 0.42 | 0.26 | 0.73 |
Breast IMPS209 | 3.76 | 3.62 | 3.81 | 4.04 | 0.33 | 0.29 | 0.87 | 0.36 | 0.21 | 0.11 | 0.45 |
Treatments 1 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Control | SC | MOS | SC+MOS | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
GIT fill, kg | 4.33 | 4.40 | 4.41 | 4.22 | 0.40 | 0.92 | 0.89 | 0.85 | 0.98 | 0.76 | 0.74 |
EBW, % of full weight | 92.00 | 91.90 | 92.86 | 92.72 | 0.67 | 0.92 | 0.82 | 0.55 | 0.90 | 0.49 | 0.42 |
Full viscera, kg | 9.24 | 9.62 | 9.60 | 9.82 | 0.46 | ||||||
Organs, g/kg of EBW | |||||||||||
Stomach complex | 28.47 | 29.77 | 30.04 | 30.07 | 0.74 | 0.31 | 0.22 | 0.20 | 0.82 | 0.79 | 0.97 |
Intestines | 41.91 | 40.17 | 40.31 | 40.40 | 0.59 | 0.08 | 0.12 | 0.15 | 0.53 | 0.48 | 0.85 |
Liver/spleen | 15.09 | 14.94 | 15.34 | 15.41 | 0.44 | 0.67 | 0.25 | 0.21 | 0.14 | 0.11 | 0.92 |
Heart/lungs | 21.26 | 20.21 | 20.95 | 21.91 | 0.71 | 0.36 | 0.82 | 0.61 | 0.49 | 0.16 | 0.47 |
Kidney | 2.36 | 2.24 | 2.29 | 2.28 | 0.11 | 0.36 | 0.57 | 0.52 | 0.72 | 0.77 | 0.94 |
Visceral fat | 37.34 | 37.37 | 39.52 | 40.81 | 1.38 | 0.86 | 0.22 | 0.02 | 0.16 | 0.02 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Angulo, A.; Zapata-Ramírez, O.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ríos-Rincón, F.G.; Barreras, A.; Zinn, R.A.; Leyva-Morales, J.B.; et al. The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology 2021, 10, 1137. https://doi.org/10.3390/biology10111137
Estrada-Angulo A, Zapata-Ramírez O, Castro-Pérez BI, Urías-Estrada JD, Gaxiola-Camacho S, Angulo-Montoya C, Ríos-Rincón FG, Barreras A, Zinn RA, Leyva-Morales JB, et al. The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology. 2021; 10(11):1137. https://doi.org/10.3390/biology10111137
Chicago/Turabian StyleEstrada-Angulo, Alfredo, Octavio Zapata-Ramírez, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Soila Gaxiola-Camacho, Claudio Angulo-Montoya, Francisco G. Ríos-Rincón, Alberto Barreras, Richard A. Zinn, José B. Leyva-Morales, and et al. 2021. "The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions" Biology 10, no. 11: 1137. https://doi.org/10.3390/biology10111137
APA StyleEstrada-Angulo, A., Zapata-Ramírez, O., Castro-Pérez, B. I., Urías-Estrada, J. D., Gaxiola-Camacho, S., Angulo-Montoya, C., Ríos-Rincón, F. G., Barreras, A., Zinn, R. A., Leyva-Morales, J. B., Perea-Domínguez, X., & Plascencia, A. (2021). The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology, 10(11), 1137. https://doi.org/10.3390/biology10111137