Digital PCR for Genotype Quantification: A Case Study in a Pasta Production Chain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Workflow
- Establishment of a working collection of 28 durum wheat varieties, selected from among the most extensively cultivated in Italian environments [17];
- Selection of a durum wheat target variety (TV), whose name cannot be reported in accordance with the protection requirements of sensitive industrial data;
- Genotype-by-sequencing through DArTseq analysis of the DNAs extracted from certified seeds of TV and of all the cultivars, included in the working collection, and establishment of a SNP database;
- SNP screening directed to the identification of a private allele of the target variety;
- Development of a chip digital PCR assay designed for such private allele to identify and quantify the target variety;
- Evaluation of the applicability of the dPCR assay on reference grain, flour, and pasta samples;
- Digital PCR analysis of five commercial grain samples;
- DArTseq analysis of five commercial grain samples;
- SSR analysis of five commercial grain samples;
- Comparison among the fingerprinting methods.
2.2. Materials
2.2.1. Seed Samples
2.2.2. Flour Samples
2.2.3. Pasta Samples
2.2.4. Commercial Grain Lots
2.3. Chip Digital PCR Assay
2.4. SSR Analysis
2.5. DArTseq Analysis
3. Results
3.1. Digital PCR Assay
3.1.1. Specificity
3.1.2. Precision, Accuracy, Trueness, and Sensitivity
3.2. Digital PCR Assay Validation on Reference Pasta and Comparison with SSR Analysis
3.3. Digital PCR Assay Application to Commercial Grain Samples and Comparison with SSR and DArTseq Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espiñeira, M.; Santaclara, F.J. What is food traceability. In Advances in Food Traceability Techniques and Technologies; Espiñeira, M., Santaclara, F.J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 3–8. [Google Scholar]
- LEGGE 4 luglio 1967, n. 580 Disciplina per la Lavorazione e Commercio dei Cereali, Degli Sfarinati, del Pane e Delle Paste Alimentari. (GU Serie Generale n.189 del 29-07-1967). Available online: https://www.gazzettaufficiale.it/gazzetta/serie_generale/caricaDettaglio?dataPubblicazioneGazzetta=1967 -07-29&numeroGazzetta=189 (accessed on 30 March 2021).
- DECRETO DEL PRESIDENTE DELLA REPUBBLICA 9 febbraio 2001, n. 187. Regolamento per la Revisione della Normativa sulla Produzione e Commercializzazione di Sfarinati e Paste Alimentari, a Norma Dell’articolo 50 Della Legge 22 Febbraio 1994, n. 146. (GU Serie Generale n.117 del 22-05-2001). Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubbli cazioneGazzetta=2001-05-22&atto.codiceRedazionale=001A5636&elenco30giorni=false (accessed on 30 March 2021).
- DECRETO DEL PRESIDENTE DELLA REPUBBLICA 5 marzo 2013, n. 41. Regolamento Recante Modifiche al Decreto del Presidente della Repubblica 9 Febbraio 2001, n. 187, Concernente la Revisione della Normativa sulla Produzione e Commercializzazione di Sfarinati e paste Alimentari. (13G00082) (GU Serie Generale n.95 del 23-04-2013). Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6230 (accessed on 30 March 2021).
- Troccoli, A.; Borrelli, G.M.; De Vita, P.; Fares, C.; Di Fonzo, N. Mini Review: Durum Wheat Quality: A Multidisciplinary Concept. J. Cereal Sci. 2000, 32, 99–113. [Google Scholar] [CrossRef]
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Agric. 2019, 99, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Acquistucci, R.; Melini, V.; Galli, V. Durum Wheat Grain and Pasta from Locally-Grown Crops: A Case-Study on Saragolla (Triticum Turgidum ssp. turanicum) and Senatore Cappelli (Triticum Turgidum ssp. durum) Wheats. Emir. J. Food Agric. 2020, 32, 47–54. [Google Scholar] [CrossRef]
- Stanco, M.; Nazzaro, C.; Lerro, M.; Marotta, G. Sustainable Collective Innovation in the Agri-Food Value Chain: The Case of the “Aureo” Wheat Supply Chain. Sustainability 2020, 12, 5642. [Google Scholar] [CrossRef]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights into deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Zhao, Y.; Beier, S.; Schulthess, A.W.; Stein, N.; Philipp, N.; Röder, M.S.; Reif, J.C. Suitability of Single-Nucleotide Polymorphism Arrays Versus Genotyping-By-Sequencing for Genebank Genomics in Wheat. Front. Plant Sci. 2020, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frascaroli, E.; Schrag, T.A.; Melchinger, A.E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor. Appl. Genet. 2013, 126, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Possible Use of Molecular Markers in the Examination of Distinctness, Uniformity and Stability (DUS). Available online: https://www.upov.int/edocs/infdocs/en/upov_inf_18_1.pdf (accessed on 30 March 2021).
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Payne, T.; Marshall, D.; et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 2020, 11, 4572. [Google Scholar] [CrossRef] [PubMed]
- Morcia, C.; Ghizzoni, R.; Delogu, C.; Andreani, L.; Carnevali, P.; Terzi, V. Digital PCR: What Relevance to Plant Studies? Biology 2020, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, F. Frumento duro, le varietà consigliate per la prossima campagna. Terra e Vita 2020, 17. Available online: https://terraevita.edagricole.it/seminativi/frumento-duro-le-varieta-consigliate-per-la-prossima-campagna/ (accessed on 30 March 2021).
- Cibecchini, G.; Cecere, P.; Tumino, G.; Morcia, C.; Ghizzoni, R.; Carnevali, P.; Terzi, V.; Pompa, P.P. A Fast, Naked-Eye Assay for Varietal Traceability in the Durum Wheat Production Chain. Foods 2020, 9, 1691. [Google Scholar] [CrossRef] [PubMed]
- International Rules for Seed Testing 2021 (Chapter 8.10.2 Triticum). Available online: https://www.seedtest.org/en/international-rules-for-seed-testing-_content---1--1083.html (accessed on 30 March 2021).
- Archak, S.; Lakshminarayanareddy, V.; Nagaraju, J. High-throughput multiplex microsatellite marker assay for detection and quantification of adulteration in Basmati rice (Oryza sativa). Electrophoresis 2007, 28, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, F.; Morittu, V.M.; Cicino, C.; Palmieri, C.; Britti, D. Rapid capillary electrophoresis approach for the quantification of ewe milk adulteration with cow milk. J. Chromatogr. A 2017, 1519, 131–136. [Google Scholar] [CrossRef] [PubMed]
- CXG 74-2010 Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods 2010. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/ (accessed on 30 March 2021).
- ENGL, European Network of GMO Laboratories. Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. 2015. Available online: http://gmocrl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 30 March 2021).
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeke, T.; Beecher, B.; Eng, M. Assessment of genetically engineered events in heat-treated and non-treated samples using droplet digital PCR and real-time quantitative PCR. Food Control 2020, 115, 107291. [Google Scholar] [CrossRef]
- Madesis, P.; Ganopoulos, I.; Sakaridis, I.; Argiriou, A.; Tsaftaris, A. Advances of DNA-based methods for tracing the botanical origin of food products. Food Res. Int. 2014, 60, 163–172. [Google Scholar] [CrossRef]
Sample | dPCR | DArTseq | SSR |
---|---|---|---|
Working collection of certified seeds | + | + | + |
100% TV flour | + | − | − |
90% TV flour | + | − | − |
80% TV flour | + | − | − |
70% TV flour | + | − | − |
60% TV flour | + | − | − |
50% TV flour | + | − | − |
40% TV flour | + | − | − |
30% TV flour | + | − | − |
20% TV flour | + | − | − |
0% TV flour | + | − | − |
Pasta 100% TV | + | + | + |
Pasta 90% TV | + | + | + |
Pasta 70% TV | + | + | + |
Pasta 50% TV | + | + | + |
Pasta 20% TV | + | + | + |
Grain commercial lots | + | + | + |
Actual TV% in Flour | Mean TV% in Flour | Std Dev | Absolute Error | Relative Error |
---|---|---|---|---|
100% | 96.6 | 0 | 3.4 | 0.03 |
90% | 90.9 | 0.07 | 0.95 | 0.01 |
80% | 84.2 | 0.47 | 4.2 | 0.05 |
70% | 70.3 | 0.56 | 0.3 | 0.004 |
60% | 55.7 | 2.48 | 4.25 | 0.07 |
50% | 48.7 | 1.63 | 1.25 | 0.025 |
40% | 39.7 | 2.62 | 0.25 | 0.006 |
30% | 31.4 | 1.84 | 1.4 | 0.04 |
20% | 26.1 | 0.92 | 6.15 | 0.3 |
0% | 0 | - | - | - |
Actual TV% in Pasta | Mean TV% in Flour (dPCR) | Std Dev | Absolute Error | Relative Error |
90% | 88.7 | 1.34 | 1.25 | 0.01 |
70% | 63.4 | 2.69 | 6.6 | 0.09 |
50% | 48.4 | 2.05 | 1.55 | 0.03 |
20% | 26.1 | 0.92 | 6.15 | 0.31 |
Actual TV% in Pasta | Mean TV% in Flour (SSR) | Std Dev | Absolute Error | Relative Error |
90% | 89 | 0.02 | 1 | 0.01 |
70% | 66 | 0.01 | 4 | 0.06 |
50% | 49 | 0.03 | 1 | 0.02 |
20% | 20.5 | 0.01 | 0.5 | 0.025 |
Analytical Technique | Cost Class | Need of Reference Curve | Need of Single-Seed Analysis |
---|---|---|---|
Digital PCR | A | − | − |
qPCR | B | + | − |
Bar-HRM, SSR-HRM, SNP-HRM | B | + | − |
SSR-peak area | A | − | − |
SSR genotyping | C | − | + |
KASPar SNP genotyping | C | − | + |
SNP genotyping | C | − | + |
GBS genotyping | C | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcia, C.; Terzi, V.; Ghizzoni, R.; Vaiuso, C.; Delogu, C.; Andreani, L.; Venturini, A.; Carnevali, P.; Pompa, P.P.; Tumino, G. Digital PCR for Genotype Quantification: A Case Study in a Pasta Production Chain. Biology 2021, 10, 419. https://doi.org/10.3390/biology10050419
Morcia C, Terzi V, Ghizzoni R, Vaiuso C, Delogu C, Andreani L, Venturini A, Carnevali P, Pompa PP, Tumino G. Digital PCR for Genotype Quantification: A Case Study in a Pasta Production Chain. Biology. 2021; 10(5):419. https://doi.org/10.3390/biology10050419
Chicago/Turabian StyleMorcia, Caterina, Valeria Terzi, Roberta Ghizzoni, Chiara Vaiuso, Chiara Delogu, Lorella Andreani, Andrea Venturini, Paola Carnevali, Pier Paolo Pompa, and Giorgio Tumino. 2021. "Digital PCR for Genotype Quantification: A Case Study in a Pasta Production Chain" Biology 10, no. 5: 419. https://doi.org/10.3390/biology10050419
APA StyleMorcia, C., Terzi, V., Ghizzoni, R., Vaiuso, C., Delogu, C., Andreani, L., Venturini, A., Carnevali, P., Pompa, P. P., & Tumino, G. (2021). Digital PCR for Genotype Quantification: A Case Study in a Pasta Production Chain. Biology, 10(5), 419. https://doi.org/10.3390/biology10050419