Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparations of ZnAl-LDHs Film
2.2. Surface Morphology, Roughness, and Crystallographic Structure Characterizations
2.3. Electrochemical and Neutral Salt Spray Tests
3. Results and Discussion
3.1. Surface Roughness Analysis
3.2. Microstructure Analysis
3.3. Crystal Structure Analysis
3.4. Cross-Sectional Analysis
3.5. Wettability Evaluation
3.6. Binding Force Analysis
3.7. Corrosion Resistance Analysis
3.7.1. Electrochemical Tests Analysis
3.7.2. Neutral Salt Spray Tests Analysis
4. Discussion
4.1. Mechanism of Thin Film Growth Influenced by Roughness
4.2. Anti-Corrosion Mechanism of ZnAl-LDHs Thin Films
5. Conclusions
- (1)
- The dense ZnAl-LDH films can be prepared on AZ91D magnesium alloys with different roughness by metallographic preparation and subsequent hydrothermal reaction, and the structure of ZnAl-LDH films is tailored by roughness of magnesium alloys.
- (2)
- The smaller the surface roughness, the denser and thicker the ZnAl-LDH films and the better the corrosion resistance and the less the increase in mass after neutralization of salt fog corrosion.
- (3)
- The reason why surface roughness affects the growth rate and direction of LDHs thin film nanosheets may be related to nucleation sites. This also provides a theoretical basis for the optimal processing parameters of magnesium alloy surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol. 2018, 34, 1455–1466. [Google Scholar]
- Imandoust, A.; Barrett, C.; Al-Samman, T.; Inal, K.; Kadiri, H. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 2017, 52, 1–29. [Google Scholar]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Ballerini, G.; Bardi, U.; Bignucolo, R.; Ceraolo, G. About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 2015, 47, 2173–2184. [Google Scholar]
- Cao, F.; Song, G.; Atrens, A. Corrosion and passivation of magnesium alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar]
- Yan, L.; Zhou, M.; Pang, X.; Gao, K. One-step in situ synthesis of reduced graphene oxide/Zn-Al layered double hydroxide film for enhanced corrosion protection of magnesium alloys. Langmuir 2019, 35, 6312–6320. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Zhang, S.; Yuan, B.; Zheng, Z.; Pan, F. A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg-Al alloy. Adv. Mater. Interfaces 2017, 4, 1700163. [Google Scholar]
- Gray, J.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar]
- Li, Z.; Yang, W.; Yu, Q.; Wu, Y.; Wang, D.; Liang, J.; Zhou, F. A New Method for the corrosion resistance of AZ31 Mg Alloy with porous micro-arc oxidation membrane as ionic corrosion inhibitor container. Langmuir 2019, 35, 1134–1145. [Google Scholar] [CrossRef]
- Wu, F.; Liang, J.; Peng, J.; Liu, B. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy. Appl. Surf. Sci. 2014, 313, 834–840. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E. In situ growth of Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy. Corros. Sci. 2011, 53, 3281–3288. [Google Scholar] [CrossRef]
- Xu, F.; Luo, L.; Xiong, L.; Liu, Y. Microstructure and corrosion behavior of ALD Al2O3 film on AZ31 magnesium alloy with different surface roughness. J. Magnes. Alloys 2020, 8, 480–492. [Google Scholar]
- Shao, Z.; Li, P.; Zhang, C.; Wu, B.; Tang, C.; Gao, M. Enhancing the anti-corrosion performance and biocompatibility of AZ91D Mg alloy by applying roughness pretreatment and coating with in-situ Mg(OH)2/Mg-Al LDH. J. Magnes. Alloys 2022, 11. [Google Scholar] [CrossRef]
- Sahin, M.; Çetinarslan, C.; Akata, H. Effect of surface roughness on friction coefficients during upsetting processes for different materials. Mater. Des. 2005, 28, 633–640. [Google Scholar] [CrossRef]
- Yan, X.; Yang, L.; An, Y.; Jin, W.; Li, Y.; Li, B. Surface roughness and hydrophilicity enhancement of polyolefin-based membranes by three kinds of plasma methods. Surf. Interface Anal. 2015, 47, 545–553. [Google Scholar]
- Zhou, M.; Pang, X.; Wei, L.; Gao, K. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties. Appl. Surf. Sci. 2015, 337, 172–177. [Google Scholar]
- Yan, Q.; Yang, K.; Wang, Z.; Chen, M.; Sun, G.; Ni, Z. Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser cladding. Opt. Laser Technol. 2022, 149, 107823. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Guo, D. Facile fabrication of superhydrophobic surfaces with low roughness on Ti-6Al-4V substrates via anodization. Appl. Surf. Sci. 2014, 314, 754–759. [Google Scholar] [CrossRef]
- Borkowski, M.; Mazur, Ł.; Maćkosz, K.; Mazur, T.; Szuwarzyński, M. Low roughness, elevated stiffness and thickness modulated surface nanocomposites based on the controlled deposition of polystyrene nanoparticles. J. Mater. Res. Technol. 2022, 19, 2799–2809. [Google Scholar] [CrossRef]
- Durst, O.; Ellermeier, J.; Berger, C. Influence of plasma-nitriding and surface roughness on the wear and corrosion resistance of thin films (PVD/PECVD). Surf. Coat. Technol. 2008, 203, 848–854. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E. Study of the corrosion mechanism of the in situ grown Mg-Al-CO32- hydrotalcite film on AZ31 alloy. Corros. Sci. 2012, 65, 268–277. [Google Scholar] [CrossRef]
- Pancrecious Jerin, K.; Gopika, P.; Suja, P.; Ulaeto, S.; Gowd, E.; Rajan, T. Role of layered double hydroxide in enhancing wear and corrosion performance of self-lubricating hydrophobic Ni-B composite coatings on aluminium alloy. Colloids Surf. A 2022, 634, 128017. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, L.; Ling, H.; Diao, Y.; Pang, X.; Wang, Y.; Gao, K. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys. Appl. Surf. Sci. 2017, 404, 246–253. [Google Scholar] [CrossRef]
- Li, J.; Bian, Y.; Tu, X.; Li, W.; Song, D. Influence of surface roughness of substrate on corrosion behavior of MAO coated ZM5 Mg alloy. J. Electroanal. Chem. 2022, 910, 116206. [Google Scholar] [CrossRef]
- Wang, X.; Gao, K.; Yan, L.; Yang, H. Effect of 2D Nanocrystalline ZnAl-LDHs Films with Different Orientations on Anticorrosion Performance of Magnesium Alloys. Mater. Lett. 2021, 293, 129708. [Google Scholar] [CrossRef]
- Bunch, J.; Verbridge, S.; Alden, J.; Van, A.; Parpia, J.; Craighead, H.; Mceuen, P. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yao, W.; Wu, L.; Chen, J.; Pan, F. Effect of Microstructure on Layered Double Hydroxides Film Growth on Mg-2Zn-xMn Alloy. Coatings 2021, 11, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhou, B.; Yuan, Z.; Wei, Y.; Fujita, T. Corrosion Protection of 6061 Aluminum Alloys by Sol-Gel Coating Modified with ZnLaAl-LDHs. Coatings 2021, 11, 478. [Google Scholar] [CrossRef]
- Wen, S.; Wang, X.; Ren, Z. Microstructure and Corrosion Resistance of an HVAF-Sprayed Al-Based Amorphous Coating on Magnesium Alloys. Coatings 2022, 12, 425. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Zhong, Z.; Chen, Y.; Wu, J.; Pan, F. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys. Surf. Coat. Technol. 2021, 413, 127083. [Google Scholar] [CrossRef]
- Saji, V.S.; Narayanan, T.S.; Chen, X. Conversion Coatings for Magnesium and Its Alloys; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 211–243. [Google Scholar]
Specimens | Ecorr (VSCE) | icorr (A/cm2) |
---|---|---|
Filmless substrate | −1.51 | 8.81 × 10−3 |
600 | −1.32 | 1.24 × 10−3 |
1200 | −1.27 | 4.13 × 10−4 |
2000 | −1.25 | 3.19 × 10−4 |
5000 | −1.23 | 1.12 × 10−4 |
Specimens | Rsol (Ω·cm2) | Rct (Ω·cm2) | CPEdl (μF cm−2) | Rf (Ω·cm2) | CPEf (μF·cm−2) |
---|---|---|---|---|---|
600 | 23.45 | 331.4 | 1.15 × 10−5 | 153.2 | 1.78 × 10−5 |
1200 | 21.87 | 390.3 | 3.34 × 10−6 | 347.8 | 2.71 × 10−5 |
2000 | 22.49 | 424.7 | 2.05 × 10−6 | 525.6 | 1.94 × 10−5 |
5000 | 21.03 | 512.5 | 1.78 × 10−6 | 932.9 | 4.62 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yan, L.; Gao, K.; Li, P.; Hao, J. Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness. Coatings 2023, 13, 724. https://doi.org/10.3390/coatings13040724
Wang X, Yan L, Gao K, Li P, Hao J. Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness. Coatings. 2023; 13(4):724. https://doi.org/10.3390/coatings13040724
Chicago/Turabian StyleWang, Xiaoge, Luchun Yan, Kewei Gao, Pengcheng Li, and Jiujiu Hao. 2023. "Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness" Coatings 13, no. 4: 724. https://doi.org/10.3390/coatings13040724
APA StyleWang, X., Yan, L., Gao, K., Li, P., & Hao, J. (2023). Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness. Coatings, 13(4), 724. https://doi.org/10.3390/coatings13040724