Research Progress in Metals and Alloys by Thermal Layering and Deposition
Author Contributions
Conflicts of Interest
References
- Deng, Y.; Chen, W.; Li, B.; Wang, C.; Kuang, T.; Li, Y. Physical vapor deposition technology for coated cutting tools: A review. Ceram. Int. 2020, 46, 18373–18390. [Google Scholar] [CrossRef]
- Makhlouf, A. Current and advanced coating technologies for industrial applications. In Nanocoatings and Ultra-Thin Films; Woodhead Publishing: Shaxton, UK, 2011; pp. 3–23. [Google Scholar]
- Upadhyay, R.K.; Kumar, A. Micro-Indentation Studies of Polymers. Polymers 2021, 2, 928–937. [Google Scholar]
- Mackus, A.J.; Merkx, M.J.; Kessels, W.M. From the Bottom Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019, 31, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Ritala, M.; Leskelä, M. Chapter 2—Atomic layer deposition. In Handbook of Thin Films; Singh Nalwa, H.B.T.-H., Ed.; Academic Press: Burlington, VT, USA, 2002; pp. 103–159. [Google Scholar]
- Puurunen, R.L. A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy. Chem. Vap. Depos. 2014, 20, 332–344. [Google Scholar] [CrossRef]
- Stevens, E.; Tomczak, Y.; Chan, B.; Altamirano Sanchez, E.; Parsons, G.N.; Delabie, A. Area-Selective Atomic Layer Deposition of TiN, TiO2, and HfO2 on Silicon Nitride with Inhibition on Amorphous Carbon. Chem. Mater. 2018, 30, 3223–3232. [Google Scholar] [CrossRef]
- Lee, B.H.; Yoon, B.; Abdulagatov, A.I.; Hall, R.A.; George, S.M. Growth and Properties of Hybrid Organic-Inorganic Metalcone Films Using Molecular Layer Deposition Techniques. Adv. Funct. Mater. 2013, 23, 532–546. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Jungen, W.; Schwartz, S.; Tietz, F.; Stöver, D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J. Am. Ceram. Soc. 2001, 84, 2086–2090. [Google Scholar] [CrossRef]
- Tamura, M.; Takahashi, M.; Ishii, J.; Suzuki, K.; Sato, M.; Shimomura, K. Multilayered thermal barrier coating for land-based gas turbines. J. Therm. Spray Technol. 1999, 8, 68–72. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Tietz, F.; Stoever, D. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides. J. Eur. Ceram. Soc. 2006, 26, 247–251. [Google Scholar] [CrossRef]
- Kumar, N.; Babu, A.; Das, A.K.; Srivastava, A.K. Effective Evaluation of Elastic Properties of a Graphene and Ceramics Reinforced Epoxy Composite under a Thermal Environment Using the Impact Hammer Vibration Technique. Coatings 2022, 12, 1325. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Dwivedi, S.; Saxena, A.; Kumar, D.; Dixit, A.R.; Singh, G.K.; Bhutto, J.K.; Verma, R. Tribological Characteristics of Al359/Si3N4/Eggshell Surface Composite Produced by Friction Stir Processing. Coatings 2022, 12, 1362. [Google Scholar] [CrossRef]
- Lashin, M.M.A.; Al Samhan, A.M.; Badwelan, A.; Khan, M.I. Control of Static and Dynamic Parameters by Fuzzy Controller to Optimize Friction Stir Spot Welding Strength. Coatings 2022, 12, 1442. [Google Scholar] [CrossRef]
- Gunduz, H.; Karslioglu, R.; Ozturk, F. Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method. Coatings 2022, 12, 1827. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, A.K.; Srivastava, A.K.; Singh, R.K.; Dixit, A.R.; Nag, A.; Hloch, S. Microwave-Assisted Synthesis, Characterization and Tribological Properties of a g-C3N4/MoS2 Nanocomposite for Low Friction Coatings. Coatings 2022, 12, 1840. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, R.K.; Srivastava, A.K.; Nag, A.; Petru, J.; Hloch, S. Surface Modification and Parametric Optimization of Tensile Strength of Al6082/SiC/Waste Material Surface Composite Produced by Friction Stir Processing. Coatings 2022, 12, 1909. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Saxena, A.; Dixit, A.R. Investigation on the thermal behaviour of AZ31B/waste eggshell surface composites produced by friction stir processing. Compos. Commun. 2021, 28, 100912. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Kumar, N.; Saxena, A.; Tiwari, S. Effect of friction stir processing on microstructural and mechanical properties of lightweight composites and cast metal alloys—A review. Int. J. Cast Met. Res. 2021, 34, 169–195. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, A.K.; Srivastava, A.K.; Singh, N.; Dixit, A.R. An Investigation for Minimizing the Wear Loss of Microwave Assisted Synthesized g-C3N4/MoS2 Nanocomposite Coated Substrate Pin on Disc Tribometer. Coatings 2022, 12, 118. [Google Scholar]
- Wu, H.; Jiang, Y.; Hu, W.; Feng, S.; Li, J. Effect of Mesogenic Phase and Structure of Liquid Crystals on Tribological Properties as Lubricant Additives. Coatings 2023, 13, 168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.K.; Dixit, A.R. Research Progress in Metals and Alloys by Thermal Layering and Deposition. Coatings 2023, 13, 366. https://doi.org/10.3390/coatings13020366
Srivastava AK, Dixit AR. Research Progress in Metals and Alloys by Thermal Layering and Deposition. Coatings. 2023; 13(2):366. https://doi.org/10.3390/coatings13020366
Chicago/Turabian StyleSrivastava, Ashish Kumar, and Amit Rai Dixit. 2023. "Research Progress in Metals and Alloys by Thermal Layering and Deposition" Coatings 13, no. 2: 366. https://doi.org/10.3390/coatings13020366
APA StyleSrivastava, A. K., & Dixit, A. R. (2023). Research Progress in Metals and Alloys by Thermal Layering and Deposition. Coatings, 13(2), 366. https://doi.org/10.3390/coatings13020366