Detection of ARGs from Gram-Negative Bacteria in Positive Blood Cultures Using a Microarray-Based System: Towards a Molecular Antibiotic Susceptibility Assay
Abstract
1. Introduction
2. Results and Discussion
2.1. Detection of Genes Conferring Resistance to β-Lactams
2.2. Detection of Genes Conferring Resistance to Aminoglycosides, Macrolides, and Sulfonamides
2.3. Detection of Genes Conferring Resistance to Phenicols and Quinolones
3. Materials and Methods
3.1. Study Setting, Samples, and Genomic Data
3.2. HS12a/MDR-FC Testing
3.3. Comparative Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AE | Aerobic |
| AMR | Antimicrobial resistance |
| ANA | Anaerobic |
| ARG | Antimicrobial resistance gene |
| AST | Antimicrobial susceptibility testing |
| CI | Confidence interval |
| FA | FilmArray |
| HS12a | Hybrispot12 PCR Auto |
| IVDR | In vitro diagnostic regulation |
| LAMP-GN | Loop-mediated isothermal amplification for Gram-negative bacteria |
| MALDI-TOF | Matrix-assisted laser desorption ionization-time of flight |
| McN test | McNemar’s chi-squared test |
| MDR | Multidrug-resistant |
| MDR-FC | Multidrug resistance-flow chip |
| MIC | Minimum inhibitory concentration |
| MM | Molecular Mouse |
| MS | Mass spectrometry |
| NPV | Negative predictive value |
| PCR | Polymerase |
| PBC | Positive blood culture |
| PPV | Positive predictive value |
| SE | Sensitivity |
| SNP | Single-nucleotide polymorphism |
| SP | Specificity |
| TAT | Turnaround time |
| WGS | Whole-genome sequencing |
References
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Rodríguez-Villodres, Á.; Galiana-Cabrera, A.; Torres Fink, I.; Duran Jiménez, R.; Cisneros, J.M.; Lepe, J.A. Evaluation of the MDR Direct Flow Chip Kit for the detection of multiple antimicrobial resistance determinants. Microb. Drug Resist. 2023, 29, 381–385. [Google Scholar] [CrossRef]
- Menchinelli, G.; Squitieri, D.; Magrì, C.; De Maio, F.; D’Inzeo, T.; Cacaci, M.; De Angelis, G.; Sanguinetti, M.; Posteraro, B. Verification of the Vitek Reveal system for direct antimicrobial susceptibility testing in Gram-negative positive blood cultures. Antibiotics 2024, 13, 1058. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. IVDR: Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices. Off. J. Eur. Union. 2017, 60, L117. [Google Scholar]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Ferrer, R.; Martin-Loeches, I.; Phillips, G.; Osborn, T.M.; Townsend, S.; Dellinger, R.P.; Artigas, A.; Schorr, C.; Levy, M.M. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [Google Scholar] [CrossRef]
- Walker, T.; Dumadag, S.; Lee, C.J.; Lee, S.H.; Bender, J.M.; Cupo Abbott, J.; She, R.C. Clinical impact of laboratory implementation of Verigene BC-GN microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J. Clin. Microbiol. 2016, 54, 1789–1796. [Google Scholar] [CrossRef]
- Castañeda-Barba, S.; Top, E.M.; Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat. Rev. Microbiol. 2024, 22, 18–32. [Google Scholar] [CrossRef]
- Bennett, P.M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008, 153, S347–S357. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef]
- Mauri, C.; Consonni, A.; Briozzo, E.; Giubbi, C.; Meroni, E.; Tonolo, S.; Luzzaro, F. Microbiological assessment of the FilmArray Blood Culture Identification 2 panel: Potential impact in critically ill patients. Antibiotics 2023, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Bach, K.; Edel, B.; Höring, S.; Bartoničkova, L.; Glöckner, S.; Löffler, B.; Bahrs, C.; Rödel, J. Performance of the eazyplex® BloodScreen GN as a simple and rapid molecular test for identification of Gram-negative bacteria from positive blood cultures. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 489–494. [Google Scholar] [CrossRef]
- Ivagnes, V.; De Maio, F.; Baccani, I.; Antonelli, A.; Menchinelli, G.; Rosato, R.; Cafaro, G.; Santarelli, G.; Falletta, F.; D’Inzeo, T.; et al. Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. Front. Cell. Infect. Microbiol. 2025, 15, 1597700. [Google Scholar] [CrossRef] [PubMed]
- Fiori, B.; D’Inzeo, T.; Di Florio, V.; De Maio, F.; De Angelis, G.; Giaquinto, A.; Campana, L.; Tanzarella, E.; Tumbarello, M.; Antonelli, M.; et al. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: Clinical comparison of the BacT/Alert Plus and Bactec Plus systems. J. Clin. Microbiol. 2014, 52, 3558–3567. [Google Scholar] [CrossRef]
- Holma, T.; Antikainen, J.; Haiko, J. Evaluation of three molecular carbapenemase tests: Eazyplex SuperBug complete B, Novodiag CarbaR+, and Amplidiag CarbaR+MCR. J. Microbiol. Methods. 2021, 180, 106105. [Google Scholar] [CrossRef]
- Anton-Vazquez, V.; Hine, P.; Krishna, S.; Chaplin, M.; Planche, T. Rapid versus standard antimicrobial susceptibility testing to guide treatment of bloodstream infection. Cochrane Database Syst. Rev. 2021, 5, CD013235. [Google Scholar] [CrossRef]
- Andersson, P.; Harris, T.; Tong, S.Y.; Giffard, P.M. Analysis of blaSHV codon 238 and 240 allele mixtures using Sybr green high-resolution melting analysis. Antimicrob. Agents Chemother. 2009, 53, 2679–2683. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front. Microbiol. 2016, 7, 1374. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.T.; Kayser, F.H.; Hächler, H. Survey and molecular genetics of SHV beta-lactamases in Enterobacteriaceae in Switzerland: Two novel enzymes, SHV-11 and SHV-12. Antimicrob. Agents Chemother. 1997, 41, 943–949. [Google Scholar] [CrossRef][Green Version]
- Plattner, M.; Catelani, M.; Gmür, S.L.; Hartmann, M.; Kiliç, F.; Haldimann, K.; Crich, D.; Hobbie, S.N. Phenotypic differentiation within the aac(6′) aminoglycoside resistance gene family suggests a novel subtype IV of contemporary clinical relevance. Antibiotics 2024, 13, 1196. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Xu, W.; Huang, D.; Liu, C.; Lu, J.; Zhu, M.; Bao, Q.; Pan, W. aac(6′)-Iaq, a novel aminoglycoside acetyltransferase gene identified from an animal isolate Brucella intermedia DW0551. Front. Cell Infect. Microbiol. 2025, 15, 1551240. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Cai, W.; Mao, R.; Chen, M.; Dai, X.; Jin, X.; Kong, W. Three simple and cost-effective assays for AAC(6′)-Ib-cr enzyme activity. Front. Microbiol. 2025, 16, 1513425. [Google Scholar] [CrossRef]
- Gharbi, M.; Abbas, M.A.S.; Hamrouni, S.; Maaroufi, A. First report of aac(6′)-Ib. and aac(6′)-Ib-cr variant genes associated with mutations in gyrA encoded fluoroquinolone resistance in avian Campylobacter coli strains collected in Tunisia. Int. J. Mol. Sci. 2023, 24, 16116. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Nikolaidis, N.; Tolmasky, M.E. Rise and dissemination of aminoglycoside resistance: The aac(6′)-Ib. paradigm. Front. Microbiol. 2013, 4, 121. [Google Scholar] [CrossRef]
- De Maio, F.; Bianco, D.M.; Santarelli, G.; Rosato, R.; Monzo, F.R.; Fiori, B.; Sanguinetti, M.; Posteraro, B. Profiling the gut microbiota to assess infection risk in Klebsiella pneumoniae-colonized patients. Gut Microbes. 2025, 17, 2468358. [Google Scholar] [CrossRef]
- Posteraro, B.; De Maio, F.; Motro, Y.; Menchinelli, G.; De Lorenzis, D.; Marano, R.B.M.; Aljanazreh, B.; Errico, F.M.; Massaria, G.; Spanu, T.; et al. In-depth characterization of multidrug-resistant NDM-1 and KPC-3 co-producing Klebsiella pneumoniae bloodstream isolates from Italian hospital patients. Microbiol. Spectr. 2024, 12, e0330523. [Google Scholar] [CrossRef]



| Species (No. of Organisms Tested) | No. of Genes Detected by HS12a/MDR-FC (No. of Genes Detected by WGS) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| blaCMY | blaCTX-M | blaDHA | blaSHV-S | blaSHV-SK | blaIMP-like | blaKPC | blaNDM | blaOXA-23-like | blaOXA-48-like | blaVIM | Total Genes | |
| K. pneumoniae (47) | 14 (8) | 17 (14) | 4 (4) | 0 (46) | – | – | 22 (33) | 9 (9) | – | 9 (7) | 1 (2) | 76 (123) |
| E. coli (32) | 11 (11) | 7 (7) | 4 (5) | – | 4 (4) | – | – | 5 (5) | – | 5 (2) | 5 (5) | 41 (39) |
| A. baumannii (14) | – | – | – | – | – | – | – | 2 (2) | 13 (13) | – | – | 15 (15) |
| P. aeruginosa (6) | 1 (1) | – | – | – | – | 1 (1) | 1 (1) | – | 0 (1) | 2 (2) | 5 (6) | |
| E. cloacae (3) | 2 (1) | – | – | – | – | – | – | – | 0 (1) | – | 2 (1) | 4 (3) |
| P. mirabilis (3) | 3 (2) | – | – | – | 0 (1) | – | – | 1 (0) | - | – | 0 (1) | 4 (4) |
| C. freundii (2) | 2 (0) | – | – | – | – | – | 1 (2) | – | – | – | 1 (1) | 4 (3) |
| C. koseri (1) | – | – | – | – | – | – | 1 (2) | – | – | – | – | 1 (2) |
| P. stuartii (1) | 1 (0) | – | – | – | – | - | – | 1 (1) | – | – | – | 2 (1) |
| P. monteilii (1) | – | – | – | – | – | – | – | – | – | – | 1 (1) | 1 (1) |
| R. ornithinolytica (1) | – | – | – | – | – | – | – | – | – | – | 1 (1) | 1 (1) |
| Total species (111) | 34 (23) | 24 (21) | 8 (9) | 0 (46) | 4 (5) | 1 (1) | 24 (37) | 19 (18) | 13 (14) | 14 (10) | 13 (14) | 154 (198) |
| Species (No. of Organisms Tested) | No. of Genes Detected by HS12a/MDR-FC (No. of Genes Detected by WGS), Conferring Resistance to: | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides | Macrolides | Sulfonamides | |||||||
| aac(6’)-Ib | armA | rmtB | rmtC | ermB | sul1 | sul2 | sul3 | Total Genes | |
| K. pneumoniae (47) | 20 (20) | 6 (10) | – | 0 (2) | – | 32 (40) | 12 (14) | 1 (1) | 71 (87) |
| E. coli (32) | 10 (7) | – | 1 (1) | 2 (2) | 2 (2) | 20 (20) | 8 (8) | 2 (2) | 45 (42) |
| A. baumannii (14) | 3 (4) | 7 (8) | – | – | – | 10 (11) | 9 (9) | – | 29 (32) |
| P. aeruginosa (6) | 3 (3) | – | – | – | – | 6 (5) | 2 (1) | – | 11 (9) |
| E. cloacae (3) | 2 (1) | 0 (1) | – | – | – | 3 (3) | 1 (2) | – | 6 (7) |
| P. mirabilis (3) | 3 (3) | 0 (1) | – | 1 (0) | – | 3 (3) | 2 (2) | – | 9 (9) |
| C. freundii (2) | 2 (1) | - | – | – | – | 1 (1) | – | – | 3 (1) |
| C. koseri (1) | – | – | – | – | – | – | – | – | – |
| P. stuartii (1) | – | 1 (1) | – | – | – | 1 (1) | – | – | 2 (2) |
| P. monteilii (1) | 1 (1) | – | – | – | – | 1 (1) | – | – | 2 (2) |
| R. ornithinolytica (1) | 1 (1) | – | – | – | – | 1 (1) | – | – | 2 (2) |
| Total species (111) | 45 (41) | 14 (21) | 1 (1) | 3 (4) | 2 (2) | 78 (86) | 34 (36) | 3 (3) | 180 (194) |
| Species (No. of Organisms Tested) | No. of Genes Detected by HS12a/MDR-FC (No. of Genes Detected by WGS), Conferring Resistance to: | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Phenicols/Quinolones | Quinolones | |||||||||||
| catB3 | oqxA | oqxB | gyrE-S83L | gyrE-S83L-D87N | gyrP-T83I | gyrP-T83I-D87N | parE-S80I | qnrA | qnrB | qnrS | Total Genes | |
| K. pneumoniae (47) | 11 (5) | 37 (43) | 32 (42) | 0 (1) | 0 (9) | 22 (0) | 0 (9) | 5 (34) | 0 (1) | 5 (8) | 8 (11) | 120 (163) |
| E. coli (32) | 3 (0) | 1 (0) | – | 14 (17) | 0 (8) | 1 (0) | 0 (8) | 19 (13) | – | 1 (6) | 10 (11) | 49 (63) |
| A. baumannii (14) | – | – | – | – | – | – | – | – | – | – | – | – |
| P. aeruginosa (6) | – | 1 (0) | – | 1 (0) | 0 (1) | 5 (5) | 1 (1) | 2 (0) | – | – | 1 (0) | 11 (7) |
| E. cloacae (3) | – | 0 (1) | 0 (1) | – | – | – | – | – | – | – | 0 (1) | 0 (3) |
| P. mirabilis (3) | – | 1 (0) | – | – | – | – | – | – | – | – | – | 1 (0) |
| C. freundii (2) | 1 (0) | – | – | – | – | – | – | – | – | 1 (1) | 0 (1) | 2 (2) |
| C. koseri (1) | – | – | – | – | – | – | – | – | – | – | – | – |
| P. stuartii (1) | – | – | – | – | – | – | – | – | – | – | – | – |
| P. monteilii (1) | – | – | – | – | – | 1 (0) | – | – | – | – | – | 1 (0) |
| R. ornithinolytica (1) | – | 0 (1) | 0 (1) | – | – | – | – | – | – | – | 0 (1) | 0 (3) |
| Total species (111) | 15 (5) | 40 (45) | 32 (43) | 15 (18) | 0 (18) | 29 (5) | 1 (18) | 26 (47) | 0 (1) | 7 (15) | 19 (25) | 184 (240) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannavola, C.M.; Cafaro, G.; Fiori, B.; Rosato, R.; Monzo, F.R.; D’Inzeo, T.; Posteraro, B.; Sanguinetti, M.; De Maio, F. Detection of ARGs from Gram-Negative Bacteria in Positive Blood Cultures Using a Microarray-Based System: Towards a Molecular Antibiotic Susceptibility Assay. Antibiotics 2025, 14, 1221. https://doi.org/10.3390/antibiotics14121221
Mannavola CM, Cafaro G, Fiori B, Rosato R, Monzo FR, D’Inzeo T, Posteraro B, Sanguinetti M, De Maio F. Detection of ARGs from Gram-Negative Bacteria in Positive Blood Cultures Using a Microarray-Based System: Towards a Molecular Antibiotic Susceptibility Assay. Antibiotics. 2025; 14(12):1221. https://doi.org/10.3390/antibiotics14121221
Chicago/Turabian StyleMannavola, Cataldo Maria, Giordana Cafaro, Barbara Fiori, Roberto Rosato, Francesca Romana Monzo, Tiziana D’Inzeo, Brunella Posteraro, Maurizio Sanguinetti, and Flavio De Maio. 2025. "Detection of ARGs from Gram-Negative Bacteria in Positive Blood Cultures Using a Microarray-Based System: Towards a Molecular Antibiotic Susceptibility Assay" Antibiotics 14, no. 12: 1221. https://doi.org/10.3390/antibiotics14121221
APA StyleMannavola, C. M., Cafaro, G., Fiori, B., Rosato, R., Monzo, F. R., D’Inzeo, T., Posteraro, B., Sanguinetti, M., & De Maio, F. (2025). Detection of ARGs from Gram-Negative Bacteria in Positive Blood Cultures Using a Microarray-Based System: Towards a Molecular Antibiotic Susceptibility Assay. Antibiotics, 14(12), 1221. https://doi.org/10.3390/antibiotics14121221

