Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material and Extract Preparation
3.2. Determination of Total Phenolic Content
3.3. HPLC-DAD Analysis
3.4. Determination of Antioxidant Activity
3.4.1. DPPH
3.4.2. FRAP
3.4.3. CUPRAC
3.5. Antimicrobial Activity
3.5.1. Bacterial Strains, Culture Media, and Growth Conditions
3.5.2. Antimicrobial Susceptibility Test
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jagadiswaran, B.; Alagarasan, V.; Palanivelu, P.; Theagarajan, R.; Moses, J.A.; Anandharamakrishnan, C. Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods 2021, 4, 100036. [Google Scholar] [CrossRef]
- Hassan, S.A.; Abbas, M.; Zia, S.; Maan, A.A.; Khan, M.K.I.; Hassoun, A.; Shehzad, A.; Gattin, R.; Aadil, R.M. An appealing review of industrial and nutraceutical applications of pistachio waste. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.; Aadil, R.M. Effective valorization of food wastes and by-products through pulsed electric field: A systematic review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. High-throughput screening and characterization of phenolic compounds in stone fruits waste by lc-esi-qtof-ms/ms and their potential antioxidant activities. Antioxidants 2021, 10, 234. [Google Scholar] [CrossRef]
- Del Rio Osorio, L.L.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Milho, C.; Silva, J.; Guimarães, R.; Ferreira, I.C.F.R.; Barros, L.; Alves, M.J. Antimicrobials from medicinal plants: An emergent strategy to control oral biofilms. Appl. Sci. 2021, 11, 4020. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, I.C.F.R.; et al. Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Alqethami, A.; Aldhebiani, A.Y. Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi J. Biol. Sci. 2021, 28, 805–812. [Google Scholar] [CrossRef]
- Malik, F.; Iqbal, A.; Zia, S.; Ranjha, M.M.A.N.; Khalid, W.; Nadeem, M.; Selim, S.; Hadidi, M.; Moreno, A.; Manzoor, M.F. Role and mechanism of fruit waste polyphenols in diabetes management. Open Chem. 2023, 21. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional therapy and natural compounds with antibacterial activity-a pharmaco-toxicological screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef]
- Silva, V.; Singh, R.K.; Gomes, N.; Soares, B.G.; Silva, A.; Falco, V.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Amaral, J.S.; et al. Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- De Simeis, D.; Serra, S. Actinomycetes: A never-ending source of bioactive compounds—An overview on antibiotics production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef]
- Akbar, Z.; Alquwez, N.; Alsolais, A.; Thazha, S.K.; Ahmad, M.D.; Cruz, J.P. Knowledge about antibiotics and antibiotic resistance among health-related students in a Saudi University. J. Infect. Dev. Ctries 2021, 15, 925–933. [Google Scholar] [CrossRef]
- Butler, M.S.; Paterson, D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. 2020, 73, 329–364. [Google Scholar] [CrossRef]
- Lucien, M.A.B.; Canarie, M.F.; Kilgore, P.E.; Jean-Denis, G.; Fénélon, N.; Pierre, M.; Cerpa, M.; Joseph, G.A.; Maki, G.; Zervos, M.J.; et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Tehranifar, A.; Selahvarzi, Y.; Kharrazi, M.; Bakhsh, V.J. High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind. Crops Prod. 2011, 34, 1523–1527. [Google Scholar] [CrossRef]
- Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar] [CrossRef]
- Farag, R.S.; Abdel-Latif, M.S.; Emam, S.S.; Tawfeek, L.S. Phytochemical screening and polyphenol constituents of pomegranate peels and leave juices. Agric. Soil Sci. 2014, 1, 86–93. [Google Scholar]
- Stojanović, B.T.; Mitić, S.S.; Stojanović, G.S.; Mitić, M.N.; Kostić, D.A.; Paunović, D.Ɖ.; Arsić, B.B.; Pavlović, A.N. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem. 2017, 232, 466–475. [Google Scholar] [CrossRef]
- Campos, L.; Seixas, L.; Henriques, M.H.F.; Peres, A.M.; Veloso, A.C.A. Pomegranate Peels and Seeds as a Source of Phenolic Compounds: Effect of Cultivar, By-Product, and Extraction Solvent. Int. J. Food Sci. 2022, 2022, 9189575. [Google Scholar] [CrossRef]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.; Seixas, L.; Dias, S.; Peres, A.M.; Veloso, A.C.A.; Henriques, M. Effect of Extraction Method on the Bioactive Composition, Antimicrobial Activity and Phytotoxicity of Pomegranate By-Products. Foods 2022, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.-C.; Jo, E.-K.; Bae, M.-S.; Lee, H.-J.; Jeon, G.-I.; Park, E.; Yuk, H.-G.; Ahn, G.-H.; Lee, S.-C. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J. Med. Plants Res. 2010, 4, 155–160. [Google Scholar]
- Jang, I.-C.; Jo, E.-K.; Bae, S.-M.; Bae, M.-S.; Lee, H.-J.; Park, E.; Yuk, H.-G.; Ahn, G.-H.; Lee, S.-C. Antioxidant Activity and Fatty Acid Composition of Four Different Persimmon Seeds. Food Sci. Technol. Res. 2010, 16, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Moon, H.K.; Kim, J.-K. Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Sci. Biotechnol. 2018, 27, 177–184. [Google Scholar] [CrossRef]
- Choe, J.-H.; Kim, H.-Y.; Kim, Y.-J.; Yeo, E.-J.; Kim, C.-J. Antioxidant Activity and Phenolic Content of Persimmon Peel Extracted with Different Levels of Ethanol. Int. J. Food Prop. 2014, 17, 1779–1790. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Phenolic Profile of Cydonia oblonga Miller Leaves. J. Agric. Food Chem. 2007, 55, 7926–7930. [Google Scholar] [CrossRef]
- Sonmez, F.; Sahin, Z. Comparative Study of Total Phenolic Content, Antioxidant Activities, and Polyphenol Oxidase Enzyme Inhibition of Quince Leaf, Peel, and Seed Extracts. Erwerbs-Obstbau 2022. [Google Scholar] [CrossRef]
- Benzarti, S.; Hamdi, H.; Lahmayer, I.; Toumi, W.; Kerkeni, A.; Belkadhi, K.; Sebei, H. Total phenolic compounds and antioxidant potential of quince (Cydonia oblonga Miller) leaf methanol extract. Int. J. Innov. Appl. Stud. 2015, 13, 518. [Google Scholar]
- Tzanakis, E.; Kalogeropoulos, T.H.; Tzimas, S.T.; Chatzilazarou, A.; Katsoyannos, E. Phenols and antioxidant activity of apple, quince, pomegranate, bitter orange and almond-leaved pear methanolic extracts. EJ Sci. Technol. 2006, 1, 16–28. [Google Scholar]
- Ali, O.M.; Hashem, Y.; Bekhit, A.A.; Khattab, S.N.; Elkhodairy, K.A.; Freag, M.S.; Teleb, M.; Elzoghby, A.O. Nanostructures of gelatin for encapsulation of food ingredients. In Nanoencapsulation in the Food Industry; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 189–216. ISBN 978-0-12-815663-6. [Google Scholar]
- Chen, P.; Guo, Z.; Chen, F.; Wu, Y.; Zhou, B. Recent advances and perspectives on the health benefits of urolithin B, a bioactive natural product derived from ellagitannins. Front. Pharmacol. 2022, 13, 917266. [Google Scholar] [CrossRef]
- Fraschetti, C.; Goci, E.; Nicolescu, A.; Cairone, F.; Carradori, S.; Filippi, A.; Palmieri, V.; Mocan, A.; Cesa, S. Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits. Foods 2023, 12, 1908. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Ismail, T.; Sestili, P.; Akhtar, S. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 2012, 143, 397–405. [Google Scholar] [CrossRef]
- García-Villalba, R.; Espín, J.C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P.A.; Pelvan, E.; et al. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts. J. Agric. Food Chem. 2015, 63, 6555–6566. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Siberian Raspberries: LC-MS Profile, Seasonal Variation, Antioxidant Activity and, Thermal Stability of Rubus matsumuranus Phenolome. Plants 2021, 10, 2317. [Google Scholar] [CrossRef]
- Pachuau, L. Phytochemical and Pharmacological Profile of Rubus idaeus. In Bioactives and Pharmacology of Medicinal Plants; Apple Academic Press: Cambridge, MA, USA, 2022; pp. 329–338. ISBN 1003281702. [Google Scholar]
- Yoshida, T.; Yoshimura, M.; Amakura, Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018, 23, 552. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Li, P.; Koreishi, M.; Nagatomo, A.; Nishida, N.; Yoshida, T. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products. Food Chem. 2014, 152, 323–330. [Google Scholar] [CrossRef]
- Kawakami, K.; Li, P.; Uraji, M.; Hatanaka, T.; Ito, H. Inhibitory Effects of Pomegranate Extracts on Recombinant Human Maltase–Glucoamylase. J. Food Sci. 2014, 79, H1848–H1853. [Google Scholar] [CrossRef]
- Mosele, J.I.; Macià, A.; Romero, M.-P.; Motilva, M.-J.; Rubió, L. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. J. Funct. Foods 2015, 14, 529–540. [Google Scholar] [CrossRef]
- Cheshomi, H.; Bahrami, A.R.; Rafatpanah, H.; Matin, M.M. The effects of ellagic acid and other pomegranate (Punica granatum L.) derivatives on human gastric cancer AGS cells. Hum. Exp. Toxicol. 2022, 41, 9603271211064534. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Jouyban, A. A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). J. Med. Plants Res. 2011, 5, 3577–3594. [Google Scholar]
- Sut, S.; Dall’Acqua, S.; Poloniato, G.; Maggi, F.; Malagoli, M. Preliminary evaluation of quince (Cydonia oblonga Mill.) fruit as extraction source of antioxidant phytoconstituents for nutraceutical and functional food applications. J. Sci. Food Agric. 2019, 99, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rocha, K.M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Larrosa-Pérez, M.; Moreno-Jiménez, M.R. Phenolic Acids and Flavonoids in Acetonic Extract from Quince (Cydonia oblonga Mill.): Nutraceuticals with Antioxidant and Anti-Inflammatory Potential. Molecules 2022, 27, 2462. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, Y.; Asghari Ghajari, M.; Tavasoli, S. Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J. Food Sci. Technol. 2019, 56, 2365–2372. [Google Scholar] [CrossRef]
- Yaqub, S.; Farooq, U.; Shafi, A.; Akram, K.; Murtaza, M.A.; Kausar, T.; Siddique, F. Chemistry and Functionality of Bioactive Compounds Present in Persimmon. J. Chem. 2016, 2016, 3424025. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-M.; Abas, F.; Park, Y.-S.; Park, Y.-K.; Ham, K.-S.; Kang, S.-G.; Lubinska-Szczygeł, M.; Ezra, A.; Gorinstein, S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules 2021, 26, 4405. [Google Scholar] [CrossRef]
- Fu, L.; Lu, W.; Zhou, X. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. Biomed Res. Int. 2016, 2016, 4287461. [Google Scholar] [CrossRef] [Green Version]
- Heras, R.M.-L.; Quifer-Rada, P.; Andrés, A.; Lamuela-Raventós, R. Polyphenolic profile of persimmon leaves by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). J. Funct. Foods 2016, 23, 370–377. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Amri, Z.; Zaouay, F.; Lazreg-Aref, H.; Soltana, H.; Mneri, A.; Mars, M.; Hammami, M. Phytochemical content, Fatty acids composition and antioxidant potential of different pomegranate parts: Comparison between edible and non edible varieties grown in Tunisia. Int. J. Biol. Macromol. 2017, 104, 274–280. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Pérez-López, A.J.; Frutos-Fernández, M.J.; Carbonell-Barrachina, Á.A. Chapter 76—Processing Pomegranates for Juice and Impact on Bioactive Components; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 629–636. ISBN 978-0-12-404699-3. [Google Scholar]
- Ahn, H.S.; Jeon, T.I.; Lee, J.Y.; Hwang, S.G.; Lim, Y.; Park, D.K. Antioxidative activity of persimmon and grape seed extract: In vitro and in vivo. Nutr. Res. 2002, 22, 1265–1273. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer prevention: A review. J. Am. Diet. Assoc. 1996, 96, 1027–1039. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Arora, D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT—Food Sci. Technol. 2016, 65, 1025–1030. [Google Scholar] [CrossRef]
- Coman, M.M.; Oancea, A.M.; Verdenelli, M.C.; Cecchini, C.; Bahrim, G.E.; Orpianesi, C.; Cresci, A.; Silvi, S. Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. Eur. Food Res. Technol. 2018, 244, 735–745. [Google Scholar] [CrossRef]
- Wafa, B.A.; Makni, M.; Ammar, S.; Khannous, L.; Hassana, A.B.; Bouaziz, M.; Es-Safi, N.E.; Gdoura, R. Antimicrobial effect of the Tunisian Nana variety Punica granatum L. extracts against Salmonella enterica (serovars Kentucky and Enteritidis) isolated from chicken meat and phenolic composition of its peel extract. Int. J. Food Microbiol. 2017, 241, 123–131. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.C.; Paiva de Sousa, C.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; de Souza, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Dong, J.; Qiu, J.; Wang, J.; Li, H.; Dai, X.; Zhang, Y.; Wang, X.; Tan, W.; Niu, X.; Deng, X. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol. Lett. 2013, 338, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Firrman, J.; Zhang, L.; Arango-Argoty, G.; Tomasula, P.; Liu, L.; Xiao, W.; Yam, K. Apigenin impacts the growth of the gut microbiota and alters the gene expression of Enterococcus. Molecules 2017, 22, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Kong, Y.; Han, C.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. D-Alanine: D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. Agents 2008, 32, 421–426. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Fernández-López, S.; Cuñas-Figueroa, I.D.; Pérez-Rial, S.; Alakomi, H.-L.; Nohynek, L.; Oksman-Caldentey, K.-M.; Salminen, J.-P.; Esteban, J.; Cuadros, J.; et al. Sanguiin H-6 Fractionated from Cloudberry (Rubus chamaemorus) Seeds Can Prevent the Methicillin-Resistant Staphylococcus aureus Biofilm Development during Wound Infection. Antibiotics 2021, 10, 1481. [Google Scholar] [CrossRef]
- Gosset-Erard, C.; Zhao, M.; Lordel-Madeleine, S.; Ennahar, S. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chem. 2021, 352, 129396. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, C.; Wu, Q.; Zheng, Z.; Liu, P.; Li, G.; Peng, X.; Xia, X. Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Foodborne Pathog. Dis. 2017, 14, 282–287. [Google Scholar] [CrossRef]
- Benzarti, S.; Belkadhi, K.; Hamdi, H. Biological activities of phenolics from leaves of Tunisian Cydonia oblonga Miller. Allelopath. J. 2018, 45, 229–242. [Google Scholar] [CrossRef]
- Semnani, S.N.; Hajizadeh, N.; Alizadeh, H. Antibacterial effects of aqueous and organic quince leaf extracts on gram–positive and gram–negative bacteria. Banat. J. Biotechnol. 2017, 8, 54–61. [Google Scholar] [CrossRef]
- Al-Noamy, N.A.F. Detection of the Inhibitory Effect of the Leaves, Seed and Fruits of Cydonia oblonga on some Gram Positive and Negative Bacteria. Rafidain J. Sci. 2020, 29, 10–19. [Google Scholar] [CrossRef]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial Activity of Tunisian Quince (Cydonia oblonga Miller) Pulp and Peel Polyphenolic Extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef]
- Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Reddy, S.H.; Al Jahwari, M.R.H.; Al Tobi, Z.M.R. A study on FTIR, Antimicrobial, Antioxidant and Hypogycaemic effect of Diospyros kaki and Citrullus colocynthis. Int. J. Phytomed. 2019, 11, 23–31. [Google Scholar]
- Arakawa, H.; Takasaki, M.; Tajima, N.; Fukamachi, H.; Igarashi, T. Antibacterial Activities of Persimmon Extracts Relate with Their Hydrogen Peroxide Concentration. Biol. Pharm. Bull. 2014, 37, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Iyda, J.H.; Fernandes, Â.; Ferreira, F.D.; Alves, M.J.; Pires, T.C.S.P.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res. Int. 2019, 121, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Aires, A.; Carvalho, R.; Matos, M.; Carnide, V.; Silva, A.P.; Gonçalves, B. Variation of chemical constituents, antioxidant activity, and endogenous plant hormones throughout different ripening stages of highbush blueberry (Vaccinium corymbosum L.) cultivars produced in centre of Portugal. J. Food Biochem. 2017, 41, e12414. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; de Sousa, T.; Gómez, P.; Sabença, C.; Vieira-Pinto, M.; Capita, R.; Alonso-Calleja, C.; Torres, C.; Capelo, J.L.; Igrejas, G.; et al. Livestock-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) in Purulent Subcutaneous Lesions of Farm Rabbits. Foods 2020, 9, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.; Almeida, F.; Carvalho, J.A.; Castro, A.P.; Ferreira, E.; Manageiro, V.; Tejedor-Junco, M.T.; Caniça, M.; Igrejas, G.; Poeta, P. Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 179–186. [Google Scholar] [CrossRef] [PubMed]
Fruit | Component | Total Phenol Content * |
---|---|---|
Pomegranate | Leaf | 333.02 ± 21.22 a |
Peel | 71.94 ± 4.73 b | |
Seed | 21.01 ± 1.19 c | |
Quince | Leaf | 209.78 ± 14.28 a |
Peel | 61.88 ± 4.56 b | |
Seed | 12.54 ± 1.09 c | |
Persimmon | Leaf | 173.98 ± 4.51 a |
Peel | 20.61 ± 1.72 b | |
Seed | 148.17 ± 5.92 c |
Peak | Rt (min) | λmax (nm) | Identification | Quantification (mg/g of Dry Extract) | ||||
---|---|---|---|---|---|---|---|---|
PL | PP | Pe | QL | QP | ||||
1 | 21.94 | 254 | Oenothein B | 15.04 | nd | nd | nd | nd |
2 | 22.58 | 254 | Pedunculagin-2 | 5.00 | nd | nd | nd | nd |
3 | 23.24 | 320 | Sanguiin-isomer | 5.26 | nd | nd | nd | nd |
4 | 23.58 | 320 | Sanguiin-isomer | 5.98 | nd | nd | nd | nd |
5 | 24.24 | 320 | Sanguiin-H6 | 37.39 | nd | nd | nd | nd |
6 | 24.73 | 320 | p-coumaric acid | 16.00 | nd | nd | nd | nd |
7 | 25.10 | 320 | Sanguiin-isomer | 29.83 | nd | nd | nd | nd |
8 | 25.86 | 320 | Sanguiin-isomer | 40.84 | nd | nd | nd | nd |
9 | 26.70 | 320 | Sanguiin-isomer | 7.39 | nd | nd | nd | nd |
10 | 27.44 | 320 | Ellagic acid | 16.17 | nd | nd | nd | nd |
11 | 28.88 | 320 | Apigenin-3-O-galactoside | 93.73 | nd | nd | nd | nd |
12 | 29.34 | 320 | Apigenin-3-O-rutinoside | 31.08 | nd | nd | nd | nd |
13 | 30.46 | 320 | Apigenin-3-O-rhamnoside | 25.25 | nd | nd | nd | nd |
14 | 22.46 | 320 | Punicalagin α | nd | 5.77 | nd | nd | nd |
15 | 23.15 | 320 | Punicalagin β | nd | 6.73 | nd | nd | nd |
16 | 24.60 | 320 | Ellagic acid-glucoside | nd | 0.91 | nd | nd | nd |
17 | 25.31 | 320 | Ellagic acid-pentoside | nd | 0.57 | nd | nd | nd |
18 | 26.88 | 320 | Ellagic acid | nd | 3.31 | nd | nd | nd |
19 | 22.52 | 320 | Chlorogenic acid | nd | nd | nd | 2.02 | 1.25 |
20 | 23.22 | 320 | Procyanidin | nd | nd | nd | 0.26 | nd |
21 | 23.89 | 320 | Caffeic acid | nd | nd | nd | 8.10 | 3.33 |
22 | 24.48 | 320 | Procyanidin | nd | nd | nd | 0.32 | 0.35 |
23 | 24.91 | 320 | Procyanidin | nd | nd | nd | 1.71 | 0.60 |
24 | 25.39 | 320 | Procyanidin | nd | nd | nd | 2.50 | 0.39 |
25 | 25.80 | 320 | Procyanidin | nd | nd | nd | 0.72 | 0.72 |
26 | 26.33 | 320 | Quercetin-3-O-rutinoside | nd | nd | nd | 3.62 | 2.07 |
27 | 26.99 | 320 | Quercetin -3-O-xiloside | nd | nd | nd | 2.90 | nd |
28 | 27.25 | 320 | Quercetin-3-O-rhamnoside | nd | nd | nd | 1.38 | nd |
29 | 24.31 | 370 | Cyanidin | nd | nd | 0.62 | nd | nd |
30 | 26.95 | 370 | Quercetin-3-O-galactoside | nd | nd | 1.21 | nd | 5.98 |
31 | 27.20 | 370 | Kaempferol-3-O-Rhamoside | nd | nd | 2.57 | nd | nd |
32 | 28.00 | 370 | Kaempferol-3-O-glucoside | nd | nd | 4.84 | nd | nd |
33 | 28.18 | 370 | Kaempferol-3-O-Rhamoside | nd | nd | 1.38 | nd | nd |
Fruit | Component | DPPH 1 | FRAP 2 | CUPRAC 3 |
---|---|---|---|---|
Pomegranate | Leaf | 91.61 ± 0.34 a | 6448.44 ± 524.05 a | 3427.78 ± 91.00 a |
Peel | 49.15 ± 3.06 b | 2262.89 ± 217.01 b | 807.59 ± 9.63 b | |
Seed | 7.46 ± 0.98 c | 583.78 ± 31.66 c | 148.67 ± 16.35 c | |
Quince | Leaf | 82.81 ± 3.41 a | 4306.78 ± 588.45 a | 1626.22 ± 84.11 a |
Peel | 24.28 ± 1.50 b | 1266.67 ± 107.48 b | 456.44 ± 19.93 b | |
Seed | 0.21 ± 0.04 c | 204.61 ± 14.68 c | 120.74 ± 10.78 c | |
Persimmon | Leaf | 71.65 ± 3.27 a | 3770.67 ± 401.06 a | 1374.22 ± 175.43 a |
Peel | 7.98 ± 1.45 b | 550.44 ± 37.18 b | 153.89 ± 11.10 b | |
Seed | 77.97 ± 2.98 a | 4224.56 ± 319.90 a | 1573.56 ± 16.25 a |
Bacterial Strain | Inhbition Zone (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pomegranate | Quince | Persimmon | Antibiotics * | |||||||
Leaf | Peel | Seed | Leaf | Peel | Seed | Leaf | Peel | Seed | ||
Gram-negative | ||||||||||
E. coli 1 | 22 | 17 | - | - | - | - | 11 | - | 10 | 23 |
E. coli 2 | 8 | 7 | - | - | - | - | 9 | - | 7 | 27 |
E. coli 3 | - | - | - | - | - | - | 9 | - | - | 24 |
K. pneumoniae 1 | - | - | - | - | - | - | - | - | - | 30 |
K. pneumoniae 2 | - | - | - | - | - | - | - | - | - | 27 |
K. pneumoniae 3 | - | - | - | - | - | - | - | - | - | 26 |
K. oxytoca 1 | - | - | - | - | - | - | 10 | - | 9 | 29 |
K. oxytoca 2 | - | - | - | - | - | - | 8 | - | 9 | 32 |
K. oxytoca 3 | - | - | - | - | - | - | 8 | - | - | 31 |
P. aeruginosa 1 | - | - | - | - | - | - | 9 | - | 10 | 33 |
P. aeruginosa 2 | - | - | - | - | - | - | 10 | - | 8 | 35 |
Salmonella spp. | - | - | - | - | - | - | - | - | - | 30 |
Gram-positive | ||||||||||
S. aureus 1 | 17 | 20 | - | 12 | - | - | 11 | - | 9 | 21 |
S. aureus 2 | 16 | 20 | - | 11 | - | - | 12 | 9 | 10 | 22 |
S. pseudintermedius 1 | 10 | 15 | - | 10 | - | - | 8 | 9 | 9 | 29 |
S. pseudintermedius 2 | 12 | 17 | - | 11 | - | - | 9 | - | 8 | 26 |
L. monocytogenes 1 | - | - | - | 8 | - | - | - | - | - | 33 |
L. monocytogenes 2 | - | - | - | 10 | - | - | - | - | - | 30 |
E. faecium | - | - | - | - | - | - | - | - | - | 22 |
E. faecalis | 8 | 15 | - | 9 | - | - | 9 | - | 8 | 25 |
MRSA | ||||||||||
H1 | 12 | 18 | - | 10 | - | - | 10 | - | 10 | 28 |
H2 | 17 | 17 | - | 12 | 8 | - | 14 | 8 | 15 | 32 |
H3 | 12 | 17 | - | 10 | - | - | 10 | 7 | 10 | 27 |
H4 | 13 | 18 | - | 10 | - | - | 11 | - | 10 | 29 |
H5 | 15 | 19 | - | 9 | - | - | 12 | - | 10 | 25 |
A1 | 17 | 15 | - | 14 | 10 | - | 16 | 10 | - | 30 |
A2 | 12 | 20 | - | 13 | 11 | - | 15 | 10 | - | 32 |
A3 | 15 | 19 | - | 12 | 9 | - | 12 | 9 | - | 30 |
A4 | 14 | 19 | - | 14 | - | - | 16 | - | - | 33 |
A5 | 12 | 17 | - | 10 | - | - | 11 | - | - | 29 |
Bacterial Strain | MICs (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pomegranate | Quince | Persimmon | |||||||
Leaf | Peel | Seed | Leaf | Peel | Seed | Leaf | Peel | Seed | |
Gram-negative | |||||||||
E. coli 1 | 10 | 25 | - | - | - | - | 75 | - | 75 |
E. coli 2 | 50 | 75 | - | - | - | - | 75 | - | 75 |
E. coli 3 | - | - | - | - | - | - | 75 | - | - |
K. oxytoca 1 | - | - | - | - | - | - | 75 | - | 100 |
K. oxytoca 2 | - | - | - | - | - | - | 75 | - | 50 |
K. oxytoca 3 | - | - | - | - | - | - | 100 | - | - |
P. aeruginosa 1 | - | - | - | - | - | - | 75 | - | 75 |
P. aeruginosa 2 | - | - | - | - | - | - | 75 | - | 75 |
Gram-positive | |||||||||
S. aureus 1 | 50 | 10 | - | 50 | - | - | 25 | - | 25 |
S. aureus 2 | 25 | 10 | - | 25 | - | - | 25 | 75 | 25 |
S. pseudintermedius 1 | 10 | 10 | - | 25 | - | - | 25 | 75 | 25 |
S. pseudintermedius 2 | 10 | 25 | - | 50 | - | - | 50 | - | 50 |
E. faecalis | |||||||||
MRSA | |||||||||
H1 | 10 | 10 | 100 | 25 | - | - | 50 | - | 50 |
H2 | 25 | 10 | - | 10 | 75 | - | 25 | 75 | 10 |
H3 | 25 | 25 | - | 25 | - | - | 50 | 100 | 50 |
H4 | 25 | 10 | - | 25 | - | - | 50 | - | 50 |
H5 | 50 | 10 | - | 50 | - | - | 25 | - | 50 |
A1 | 25 | 10 | - | 10 | 75 | - | 25 | 25 | 25 |
A2 | 50 | 10 | - | 25 | 75 | - | 10 | 75 | 25 |
A3 | 50 | 10 | - | 25 | 75 | - | 25 | 25 | 50 |
A4 | 10 | 10 | - | 10 | - | - | 10 | - | 50 |
A5 | 50 | 10 | - | 25 | - | - | 50 | - | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Silva, A.; Ribeiro, J.; Aires, A.; Carvalho, R.; Amaral, J.S.; Barros, L.; Igrejas, G.; Poeta, P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics 2023, 12, 1086. https://doi.org/10.3390/antibiotics12071086
Silva V, Silva A, Ribeiro J, Aires A, Carvalho R, Amaral JS, Barros L, Igrejas G, Poeta P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics. 2023; 12(7):1086. https://doi.org/10.3390/antibiotics12071086
Chicago/Turabian StyleSilva, Vanessa, Adriana Silva, Jessica Ribeiro, Alfredo Aires, Rosa Carvalho, Joana S. Amaral, Lillian Barros, Gilberto Igrejas, and Patrícia Poeta. 2023. "Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective" Antibiotics 12, no. 7: 1086. https://doi.org/10.3390/antibiotics12071086
APA StyleSilva, V., Silva, A., Ribeiro, J., Aires, A., Carvalho, R., Amaral, J. S., Barros, L., Igrejas, G., & Poeta, P. (2023). Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics, 12(7), 1086. https://doi.org/10.3390/antibiotics12071086