Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy
Abstract
1. Introduction
2. Main Body
2.1. Types and Functions of Protein Modifications
2.1.1. Phosphorylation

2.1.2. Acetylation

2.1.3. Glycosylation

2.1.4. Emerging and Metabolism-Linked PTMs: Succinylation and Lactylation
2.2. Advances in Biosensing Technology
2.2.1. Electrochemical Sensors

2.2.2. Optical Sensors

2.3. Application of Protein Modifications in Disease Diagnosis
2.3.1. Early Diagnosis of Cancer
2.3.2. Monitoring of Infectious Diseases

2.3.3. Single-Cell and Spatial Proteomic Technologies for Protein Modification Detection
2.4. Food Safety and Environmental Monitoring
2.4.1. Detection of Protein Modifications in Food
2.4.2. Applications in Environmental Monitoring

2.5. Current Challenges and Future Directions
2.5.1. Detection Sensitivity and Specificity
2.5.2. Multiplexing and High-Throughput Strategies
2.5.3. Clinical Translation of Applications
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PTMs | post-translational modifications |
| SPR | surface plasmon resonance |
| SERS | surface-enhanced Raman scattering |
| MAPK | mitogen-activated protein kinase |
| FRET | fluorescence resonance energy transfer |
| AD | Alzheimer’s disease |
| p-tau | phosphorylated tau proteins |
| acetyl-CoA | acetyl-Coenzyme A |
| FET | field-effect transistors |
| QCM | quartz crystal microbalance |
| AFP | alpha-fetoprotein |
| PSA | prostate-specific antigen |
| CV | cyclic voltammetry |
| DPV | differential pulse voltammetry |
| EIS | electrochemical impedance spectroscopy |
| PEG | polyethylene glycol |
| MIP | Molecularly imprinted polymers |
| MAA | milk amyloid A |
| HSP70 | heat shock protein 70 |
| CTGF | connective tissue growth factor |
| HE4 | human epididymis protein 4 |
| MOF | microstructured optical fiber |
| LPFG | long-period fiber gratings |
| TFBG | tilted fiber Bragg gratings |
| FOEW | fiber-optic evanescent wave |
| BODIPY | boron dipyrromethene |
| FLRDS | Fiber loop ringdown spectroscopy |
| VG | voltage |
| Cq | capacitance of graphene |
| SPE | screen-printed electrodes |
| OFET | Organic field-effect transistors |
| CEA | carcinoembryonic antigen |
| IBV | infectious bronchitis virus |
| HSV-1 | Herpes simplex virus 1 |
| FA | formaldehyde |
| PMIF | protein modifications induced by formaldehyde |
| BITC | benzyl isothiocyanate |
| MS | Mass spectrometry |
| μPADs | Microfluidic paper-based analytical devices |
| HSA | human serum albumin |
| FPOP | fast photochemical oxidation of proteins |
| FTDN | functional tetrahedral DNA nanostructures |
| GO | graphene oxide |
| OFET | organic field-effect transistor |
| SiNW-FETs | silicon nanowire field-effect transistors |
| AuNPs | gold nanoparticles |
| AgNPs | silver nanoparticles |
| POC | point-of-care |
| AAV | adeno-associated virus |
| ThUBD | tandem hybrid ubiquitin-binding domain |
| RPPA | reverse phase protein array |
References
- Zhong, Q.; Xiao, X.; Qiu, Y.; Xu, Z.; Chen, C.; Chong, B.; Zhao, X.; Hai, S.; Li, S.; An, Z.; et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023, 4, e261. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J. Minor structural changes, major functional impacts: Posttranslational modifications and drug targets. Arch. Pharm. Res. 2022, 45, 693–703. [Google Scholar] [CrossRef]
- Neagu, A.N.; Josan, C.L.; Jayaweera, T.M.; Morrissiey, H.; Johnson, K.R.; Darie, C.C. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024, 29, 4156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Zhang, T.N.; Wen, R.; Liu, C.F.; Yang, N. Role of Posttranslational Modifications of Proteins in Cardiovascular Disease. Oxid. Med. Cell Longev. 2022, 2022, 3137329. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M.; Ma, X.; Huang, W.; Xu, Y. Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. BioMed Res. Int. 2021, 2021, 6635225. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, K.; Zhao, Y.; Wang, K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov. 2023, 9, 275. [Google Scholar] [CrossRef]
- Manzano-Roman, R.; Fuentes, M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J. Proteomics 2020, 220, 103762. [Google Scholar] [CrossRef]
- Chen, Y.; Quan, B.; Li, Y.; Liu, Y.; Qin, W.; Wang, C. Quantitative profiling of PTM stoichiometry by resolvable mass tags. RSC Chem. Biol. 2022, 3, 1320–1324. [Google Scholar] [CrossRef]
- Stastna, M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J. 2025, 292, 28–46. [Google Scholar] [CrossRef]
- Komar, D.; Juszczynski, P. Rebelled epigenome: Histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin. Epigenet. 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Tu, S.; Akhtar, M.W.; Sunico, C.R.; Okamoto, S.-I.; Lipton, S.A. Aberrant Protein S-Nitrosylation in Neurodegenerative Diseases. Neuron 2013, 78, 596–614. [Google Scholar] [CrossRef]
- Halloran, M.; Parakh, S.; Atkin, J.D. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int. J. Cell Biol. 2013, 2013, 15. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Zou, H.; Chen, B.; Zhong, J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev. Endocr. Metab. Dis. 2022, 23, 1011–1033. [Google Scholar] [CrossRef]
- Fang, J.; Wu, S.; Zhao, H.; Zhou, C.; Xue, L.; Lei, Z.; Li, H.; Shan, Z. New Types of Post-Translational Modification of Proteins in Cardiovascular Diseases. J. Cardiovasc. Transl. 2025, 18, 634–649. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.; Luo, B. Functional diversity: Update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol. Life Sci. 2022, 79, 590. [Google Scholar] [CrossRef]
- Springer, T.; Bockova, M.; Slaby, J.; Sohrabi, F.; Capkova, M.; Homola, J. Surface plasmon resonance biosensors and their medical applications. Biosens. Bioelectron. 2025, 278, 117308. [Google Scholar] [CrossRef]
- Chen, C.; Singh, R.; Huo, S.; Song, Y.; Wang, K.; Chiavaioli, F.; Hou, X. Evanescent wave-based optical biosensors for innovations, medical application and future perspectives. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Tian, L.; Chen, C.; Gong, J.; Han, Q.; Shi, Y.; Li, M.; Cheng, L.; Wang, L.; Dong, B. The Convenience of Polydopamine in Designing SERS Biosensors with a Sustainable Prospect for Medical Application. Sensors 2023, 23, 4641. [Google Scholar] [CrossRef]
- Varunteja, B.; Gupta, N.; Kumari, A.; Mohanty, S.; Mukherjee, T.; Nayak, N.; Chopra, M.P.; Pattnaik, A. Optical Biosensors: A Comprehensive Review of Their Applications in Photoplethysmography, Environmental Monitoring, and Medical Diagnostics. Mini-Rev. Med. Chem. 2025, 25, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Razumiene, J.; Gureviciene, V.; Sakinyte, I.; Rimsevicius, L.; Laurinavicius, V. The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies. Sensors 2020, 20, 4496. [Google Scholar] [CrossRef]
- Khan, R.; Qureshi, A.; Azhar, M.; Hassan, Z.U.; Gul, S.; Ahmad, S. Recent Progress of Fluorescent Carbon Dots and Graphene Quantum Dots for Biosensors: Synthesis of Solution Methods and their Medical Applications. J. Fluoresc. 2025, 35, 2623–2640. [Google Scholar] [CrossRef]
- Ru, M.; Hai, A.M.; Wang, L.; Yan, S.; Zhang, Q. Recent progress in silk-based biosensors. Int. J. Biol. Macromol. 2023, 224, 422–436. [Google Scholar] [CrossRef]
- Phan, D.T.; Nguyen, C.H.; Nguyen, T.; Tran, L.H.; Park, S.; Choi, J.; Lee, B.I.; Oh, J. A Flexible, Wearable, and Wireless Biosensor Patch with Internet of Medical Things Applications. Biosensors 2022, 12, 139. [Google Scholar] [CrossRef]
- Nirwal, G.K.; Wu, K.Y.; Ramnawaz, T.P.; Xu, Y.; Carbonneau, M.; Nguyen, B.H.; Tran, S.D. Implantable biosensors: Advancements and applications. Prog. Mol. Biol. Transl. 2025, 216, 279–312. [Google Scholar]
- Ding, Y.; Sun, Y.; Liu, C.; Jiang, Q.Y.; Chen, F.; Cao, Y. SERS-Based Biosensors Combined with Machine Learning for Medical Application. ChemistryOpen 2023, 12, e202200192. [Google Scholar] [CrossRef] [PubMed]
- Pawnikar, V.; Patel, M. Biosensors in wearable medical devices: Regulatory framework and compliance across US, EU, and Indian markets. Ann. Pharm. Fr. 2025, 83, 637–648. [Google Scholar] [CrossRef]
- Bissen, A.; Yunussova, N.; Myrkhiyeva, Z.; Salken, A.; Tosi, D.; Bekmurzayeva, A. Unpacking the packaged optical fiber bio-sensors: Understanding the obstacle for biomedical application. Front. Bioeng. Biotech. 2024, 12, 1401613. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, J.; Feichtner, A.; DeFalco, L.; Kugler, V.; Schwaighofer, S.; Huber, R.G.; Stefan, E. Allosteric Kinase Inhibitors Reshape MEK1 Kinase Activity Conformations in Cells and In Silico. Biomolecules 2021, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Demuyser, L.; Van Genechten, W.; Van Dijck, P. Assessment of cAMP-PKA Signaling in Candida glabrata by FRET-Based Biosensors. Methods Mol. Biol. 2022, 2542, 177–191. [Google Scholar]
- Nakashima, S.; Toyama, A.; Sugiyama, H.; Aoki, K.; Goto, Y. Capturing CDKs in action: Live-cell biosensors pioneer the new frontiers in cell cycle research. Cell Struct. Funct. 2025, 50, 77–90. [Google Scholar] [CrossRef]
- Winter, D.L.; Wairara, A.R.; Bennett, J.L.; Donald, W.A.; Glover, D.J. Protein Interaction Kinetics Delimit the Performance of Phosphorylation-Driven Protein Switches. ACS Synth. Biol. 2024, 13, 1781–1797. [Google Scholar] [CrossRef] [PubMed]
- Cabral, A.D.; Radu, T.B.; de Araujo, E.D.; Gunning, P.T. Optical chemosensors for the detection of proximally phosphorylated peptides and proteins. RSC Chem. Biol. 2021, 2, 815–829. [Google Scholar] [CrossRef]
- Feichtner, A.; Kugler, V.; Schwaighofer, S.; Nuener, T.; Fleischmann, J.; Stefan, E. Tracking mutation and drug-driven alterations of oncokinase conformations. Memo-Mag. Eur. Med. Oncol. 2022, 15, 137–142. [Google Scholar] [CrossRef]
- Dong, Q.; Shen, D.; Ye, J.; Chen, J.; Li, J. PhosCancer: A comprehensive database for investigating protein phosphorylation in human cancer. Iscience 2024, 27, 111060. [Google Scholar] [CrossRef]
- Vanova, V.; Mitrevska, K.; Milosavljevic, V.; Hynek, D.; Richtera, L.; Adam, V. Peptide-based electrochemical biosensors utilized for protein detection. Biosens. Bioelectron. 2021, 180, 113087. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lee, J.; Perez, L.; Gill, A.D.; Hooley, R.J.; Zhong, W. Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. J. Am. Chem. Soc. 2018, 140, 13869–13877. [Google Scholar] [CrossRef]
- Ahmed, E.; Masud, M.K.; Hossain, M.; Na, J.; Sina, A.A.; Yamauchi, Y.; Trau, M. Nanostructured mesoporous gold electrodes detect protein phosphorylation in cancer with electrochemical signal amplification. Analyst 2020, 145, 6639–6648. [Google Scholar] [CrossRef]
- Qiao, X.; Qian, Z.H.; Sun, W.; Zhu, C.Y.; Li, Y.; Luo, X. Phosphorylation of Oligopeptides: Design of Ultra-Hydrophilic Zwitterionic Peptides for Anti-Fouling Detection of Nucleic Acids in Saliva. Anal. Chem. 2023, 95, 11091–11098. [Google Scholar] [CrossRef]
- Lane-Donovan, C.; Smith, A.W.; Saloner, R.; Miller, B.L.; Casaletto, K.B.; Kao, A.W. Tau phosphorylation at Alzheimer’s disease biomarker sites impairs its cleavage by lysosomal proteases. Alzheimer’s Dement. 2025, 21, e70320. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Wang, S.; Jia, J. Potential diagnostic markers in Alzheimer’s disease: Current perspectives and future directions. Neurodegener. Dis. Manag. 2025, 1–13. [Google Scholar] [CrossRef]
- Warmenhoven, N.; Salvado, G.; Janelidze, S.; Mattsson-Carlgren, N.; Bali, D.; Orduna, D.A.; Kolb, H.; Triana-Baltzer, G.; Barthelemy, N.R.; Schindler, S.E.; et al. A comprehensive head-to-head comparison of key plasma phosphorylated tau 217 biomarker tests. Brain 2025, 148, 416–431. [Google Scholar] [CrossRef]
- Heckler, I.; Venkataraman, I. Phosphorylated neurofilament heavy chain: A potential diagnostic biomarker in amyotrophic lateral sclerosis. J. Neurophysiol. 2022, 127, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Shaji, V.; Rafi, A.; Ahmed, M.; Gopalakrishnan, A.P.; Soman, S.; Revikumar, A.; Prasad, G.; Jayanandan, A.; Raju, R. Analysis of phosphomotifs coupled to phosphoproteome and interactome unveils potential human kinase substrate proteins in SARS-CoV-2. Front. Cell. Infect. Microbiol. 2025, 15, 1554760. [Google Scholar] [CrossRef]
- Smith, J.J.; Valentino, T.R.; Ablicki, A.H.; Banerjee, R.; Colligan, A.R.; Eckert, D.M.; Desjardins, G.A.; Diehl, K.L. A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells. Cell Chem. Biol. 2025, 32, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Damayanti, N.P.; Buno, K.; Harbin, S.L.V.; Irudayaraj, J.M.K. Epigenetic Process Monitoring in Live Cultures with Peptide Biosensors. ACS Sens. 2019, 4, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Goda, T.; Miyahara, Y. Label-Free Monitoring of Histone Acetylation Using Aptamer-Functionalized Field-Effect Transistor and Quartz Crystal Microbalance Sensors. Micromachines 2020, 11, 820. [Google Scholar] [CrossRef]
- Kang, W.; Liu, L.; Yu, P.; Zhang, T.; Lei, C.; Nie, Z. A switchable Cas12a enabling CRISPR-based direct histone deacetylase activity detection. Biosens. Bioelectron. 2022, 213, 114468. [Google Scholar] [CrossRef]
- van den Wildenberg, S.; Genet, S.; Broeren, M.; van Dongen, J.; Brunsveld, L.; Scharnhorst, V.; van de Kerkhof, D. Immunoaffinity Intact-Mass Spectrometry for the Detection of Endogenous Concentrations of the Acetylated Protein Tumor Biomarker Neuron Specific Enolase. J. Proteome Res. 2024, 23, 3726–3730. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Zhang, X.; Zhang, J.R.; Cai, C. Surface Plasmon Resonance for the Interaction of Capsular Polysaccharide (CPS) With KpACE. Bio-Protocol 2025, 15, e5346. [Google Scholar] [CrossRef]
- Lieberman, W.K.; Brown, Z.A.; Kantner, D.S.; Jing, Y.; Megill, E.; Evans, N.D.; Crawford, M.C.; Jhulki, I.; Grose, C.; Jones, J.E.; et al. Chemoproteomics Yields a Selective Molecular Host for Acetyl-CoA. J. Am. Chem. Soc. 2023, 145, 16899–16905. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; Tian, Z. Mass spectrometry-based structure-specific N-glycoproteomics and biomedical applications. Acta Biochim. Biophys. Sin. 2024, 56, 1172–1183. [Google Scholar] [CrossRef]
- Chao, X.; Yang, S.; Zhang, B.; Zang, X.; Zhang, J.; Liu, X.; Chen, L.; Qi, L.; Xue, X.; Hu, H.; et al. A novel photocleavable amino-modified graphene for covalent purification of N-glycans from hepatocellular carcinoma patients’ serum for potential biomarkers discovery. Cancer Nanotechnol. 2025, 16, 7. [Google Scholar] [CrossRef]
- Lin, B.; Qing, X.; Liao, J.; Zhuo, K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020, 9, 1022. [Google Scholar] [CrossRef]
- Ling, Y.; Cai, F.; Su, T.; Zhong, Y.; Li, L.; Meng, B.; Li, G.; Gong, M.; Yang, H.; Xie, X.; et al. Glycosylation in kidney diseases. Precis. Clin. Med. 2025, 8, f17. [Google Scholar] [CrossRef]
- Kot, K.; Pochec, E. Protein glycosylation in bacterial and viral infections. Postepy Biochem. 2023, 69, 135–145. [Google Scholar]
- Xu, X.; Peng, Q.; Jiang, X.; Tan, S.; Yang, W.; Han, Y.; Oyang, L.; Lin, J.; Shen, M.; Wang, J.; et al. Altered glycosylation in cancer: Molecular functions and therapeutic potential. Cancer Commun. 2024, 44, 1316–1336. [Google Scholar] [CrossRef]
- Ives, C.M.; Singh, O.; D’Andrea, S.; Fogarty, C.A.; Harbison, A.M.; Satheesan, A.; Tropea, B.; Fadda, E. Restoring protein glycosylation with GlycoShape. Nat. Methods 2024, 21, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Teymennet-Ramirez, K.V.; Martinez-Morales, F.; Trejo-Hernandez, M.R. Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications. Front. Bioeng. Biotech. 2021, 9, 794742. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Qu, K. Transduction of Glycan-Lectin Binding via an Impedimetric Sensor for Glycoprotein Detection. Bioconjugate Chem. 2025, 36, 936–944. [Google Scholar] [CrossRef]
- Meany, D.L.; Zhang, Z.; Sokoll, L.J.; Zhang, H.; Chan, D.W. Glycoproteomics for Prostate Cancer Detection: Changes in Serum PSA Glycosylation Patterns. J. Proteome Res. 2009, 8, 613–619. [Google Scholar] [CrossRef]
- Diaz-Fernandez, A.; Miranda-Castro, R.; De-Los-Santos-Alvarez, N.; Lobo-Castanon, M.J.; Estrela, P. Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron. 2021, 175, 112872. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Pei, H.; Li, X.; Li, J.; Yao, X.; Zhang, R. Serum Protein N-Glycosylation Signatures of Neuroblastoma. Front. Oncol. 2021, 11, 603417. [Google Scholar] [CrossRef] [PubMed]
- Kristic, J.; Sharapov, S.Z.; Aulchenko, Y.S. Quantitative Genetics of Human Protein N-Glycosylation. Adv. Exp. Med. Biol. 2021, 1325, 151–171. [Google Scholar] [PubMed]
- Ahuja, P.; Singh, M.; Ujjain, S.K. Advancements in Electrochemical Biosensors for Comprehensive Glycosylation Assessment of Biotherapeutics. Sensors 2025, 25, 2064. [Google Scholar] [CrossRef]
- Bagheri, H.A.; Alizadeh, A.; Chun, H. Review of advances in glycan analysis on exosomes, cancer cells, and circulating cancer-derived glycoproteins with an emphasis on electrochemistry. Anal. Chim. Acta 2025, 1336, 343277. [Google Scholar] [CrossRef]
- Onigbinde, S.; Solomon, J.; Gutierrez-Reyes, C.D.; Daramola, O.; Fowowe, M.; Adeniyi, M.; Dubois, K.N.; Bakulski, K.M.; Kanaan, N.M.; LuBman, D.M.; et al. Serum N-Glycan Profiling Identifies Candidate Glycan Biomarkers for Early Detection and Prediction of Alzheimer’s Disease. J. Proteome Res. 2025, 24, 4417–4436. [Google Scholar] [CrossRef]
- Li, S.; Dong, L.; Wang, K. Current and future perspectives of lysine lactylation in cancer. Trends Cell Biol. 2025, 35, 190–193. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, Z.; Zhang, N.; Wei, W.; Cheng, K.; Sun, H.; Hao, Q. Identification of SIRT3 as an eraser of H4K16la. Iscience 2023, 26, 107757. [Google Scholar] [CrossRef]
- Suhito, I.R.; Koo, K.M.; Kim, T.H. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020, 9, 15. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Li, X.; Liu, X.; Lin, C.; Karimi-Maleh, H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023, 28, 6719. [Google Scholar] [CrossRef]
- Kalecki, J.; Cieplak, M.; Iskierko, Z.; Piechowska, J.; Nogala, W.; D’Souza, F.; Sharma, P.S. Post-imprinting modification: Electrochemical and scanning electrochemical microscopy studies of a semi-covalently surface imprinted polymer. J. Mater. Chem. B 2023, 11, 1659–1669. [Google Scholar] [CrossRef]
- Song, Z.; Han, R.; Yu, K.; Li, R.; Luo, X. Antifouling strategies for electrochemical sensing in complex biological media. Microchim. Acta 2024, 191, 138. [Google Scholar] [CrossRef]
- Vargas, E.; Zhang, F.; Ben, H.A.; Ruiz-Valdepenas, M.V.; Mundaca-Uribe, R.; Nandhakumar, P.; He, P.; Guo, Z.; Zhou, Z.; Fang, R.H.; et al. Using Cell Membranes as Recognition Layers to Construct Ultrasensitive and Selective Bioelectronic Affinity Sensors. J. Am. Chem. Soc. 2022, 144, 17700–17708. [Google Scholar] [CrossRef]
- Romih, T.; Konjevic, I.; Zibret, L.; Fazarinc, I.; Beltram, A.; Majer, D.; Finsgar, M.; Hocevar, S.B. The Effect of Preconditioning Strategies on the Adsorption of Model Proteins onto Screen-Printed Carbon Electrodes. Sensors 2022, 22, 4186. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Li, B.R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, J.; Badehnoosh, B. Electrochemical biosensors for hepatocellular carcinoma. Clin. Chim. Acta 2025, 574, 120328. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Ren, J.; Han, F.; Yu, X.; Tang, F.; Xue, F.; Chen, W.; Yang, J.; Jiang, Y.; et al. Facile construction of a molecularly imprinted polymer-based electrochemical sensor for the detection of milk amyloid A. Microchim. Acta 2020, 187, 642. [Google Scholar] [CrossRef]
- Meng, F.; Duan, M.; Wu, W.; Shao, S.; Qin, Y.; Zhang, M. Enzymatic construction Au NPs-rGO based MIP electrochemical sensor for adulteration detection of bovine-derived allergen in camel milk. Food Chem. 2024, 436, 137638. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14, 3767. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, J.; Li, Y.; Zhang-Peng, X.; Wei, H.; Li, W.; Hu, F.; Zhang, Y. Electrochemical immuno determination of connective tissue growth factor levels on nitrogen-doped graphene. Microchim. Acta 2022, 189, 187. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, W.; Yi, S.; Li, S.; Li, H.; Xia, F. Ferricyanide-Mediated, Electrocatalytic Mechanism of Electrochemical Aptamer-Based Sensor Supports Ultrasensitive Analysis of Cardiac Troponin I in Clinical Samples. Langmuir 2024, 40, 18214–18224. [Google Scholar] [CrossRef]
- Yi, L.; Jiang, T.; Ren, R.; Cao, J.; Edel, J.B.; Ivanov, A.P.; Tang, L. Quantum Mechanical Tunnelling Probes with Redox Cycling for Ultra-Sensitive Detection of Biomolecules. Angew. Chem. Int. Ed. 2025, 64, e202501941. [Google Scholar] [CrossRef]
- Xing, W.; Li, Q.; Han, C.; Sun, D.; Zhang, Z.; Fang, X.; Guo, Y.; Ge, F.; Ding, W.; Luo, Z.; et al. Customization of aptamer to develop CRISPR/Cas12a-derived ultrasensitive biosensor. Talanta 2023, 256, 124312. [Google Scholar] [CrossRef]
- Soyler, D.; Dolgun, V.; Cetin, O.; Khan, Y.; Guler, C.E.; Ozcubukcu, S.; Unalan, H.E.; Timur, S.; Soylemez, S. Surface Engineering of MXene and Functional Fullerenols for Cancer Biomarker ‘eIF3d’. Langmuir 2025, 41, 8330–8341. [Google Scholar] [CrossRef]
- Chunta, S.; Boonsriwong, W.; Wattanasin, P.; Naklua, W.; Lieberzeit, P.A. Direct assessment of very-low-density lipoprotein by mass sensitive sensor with molecularly imprinted polymers. Talanta 2021, 221, 121549. [Google Scholar] [CrossRef]
- Liu, A.; Jiang, M.; Wu, Y.; Guo, H.; Kong, L.; Chen, Z.; Luo, Z. A rapid and sensitive aptamer-based biosensor for beta-lactoglobulin in milk. Anal. Methods Adv. Methods Appl. 2024, 16, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Janczuk-Richter, M.; Gromadzka, B.; Richter, L.; Panasiuk, M.; Zimmer, K.; Mikulic, P.; Bock, W.J.; Mackowski, S.; Smietana, M.; Niedziolka, J.J. Immunosensor Based on Long-Period Fiber Gratings for Detection of Viruses Causing Gastroenteritis. Sensors 2020, 20, 813. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.L.; Kim, J.; Choi, S.; Han, J.; Seo, G.; Lee, Y.W. Fiber-optic label-free biosensor for SARS-CoV-2 spike protein detection using biofunctionalized long-period fiber grating. Talanta 2021, 235, 122801. [Google Scholar] [CrossRef]
- Wang, Z.; Lou, X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. Biosensors 2023, 13, 425. [Google Scholar] [CrossRef]
- Abramchuk, D.; Voskresenskaya, A.; Kuzmichev, I.; Erofeev, A.; Gorelkin, P.; Abakumov, M.; Beloglazkina, E.; Krasnovskaya, O. BODIPY in Alzheimer’s disease diagnostics: A review. Eur. J. Med. Chem. 2024, 276, 116682. [Google Scholar] [CrossRef]
- Oliveira, D.; Carneiro, M.; Moreira, F. SERS biosensor with plastic antibodies for detection of a cancer biomarker protein. Microchim. Acta 2024, 191, 238. [Google Scholar] [CrossRef] [PubMed]
- Ermatov, T.; Skibina, J.S.; Tuchin, V.V.; Gorin, D.A. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials 2020, 13, 921. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jun, S.W.; Ahn, Y.H. Developing a Novel Terahertz Fabry-Perot Microcavity Biosensor by Incorporating Porous Film for Yeast Sensing. Sensors 2023, 23, 5797. [Google Scholar] [CrossRef]
- Ziu, I.; Laryea, E.T.; Alashkar, F.; Wu, C.G.; Martic, S. A dip-and-read optical aptasensor for detection of tau protein. Anal. Bioanal. Chem. 2020, 412, 1193–1201. [Google Scholar] [CrossRef]
- Kaya, B.M.; Oz, S.; Esenturk, O. Application of fiber loop ringdown spectroscopy technique for a new approach to beta-amyloid monitoring for Alzheimer Disease’s early detection. Biomed. Phys. Eng. Expr. 2024, 10, 035037. [Google Scholar] [CrossRef]
- Huong, V.T.; Van Tran, V.; Lee, N.Y.; Van Hoang, D.; Loan, T.K.; Phan, T.B.; Thi, T.N. Bimetallic Thin-Film Combination of Surface Plasmon Resonance-Based Optical Fiber Cladding with the Polarizing Homodyne Balanced Detection Method and Biomedical Assay Application. Langmuir 2020, 36, 9967–9976. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, M.; Franco, C.D.; Bianco, G.V.; Bruno, G.; Macchia, E.; Torsi, L.; Scamarcio, G. Graphene-Based Opto-Electronic Platform for Ultra-Sensitive Biomarker Detection at Zeptomolar Concentrations. Small Methods 2025, 9, e2402026. [Google Scholar] [CrossRef]
- Bertolin, G.; Le Marchand, G.; Tramier, M. Real-Time Monitoring of Aurora kinase A Activation using Conformational FRET Biosensors in Live Cells. J. Vis. Exp. 2020, 161, e61611. [Google Scholar] [CrossRef]
- Wang, J.; Qi, C.; Wang, R.; Cao, Y.; Zhou, Y.; Ye, G. m5C RNA modification in colorectal cancer: Mechanisms and therapeutic targets. J. Transl. Med. 2025, 23, 948. [Google Scholar] [CrossRef]
- Zheng, Q.K.; Shi, Y.N.; Yang, M.Y.; Xie, Y.Y.; Sun, K.; Niu, H.Z. Targeting m6A methylation for early diagnosis and precision medicine in hepatocellular carcinoma. Cancer Cell Int. 2025, 25, 286. [Google Scholar] [CrossRef]
- Huang, W.; Kong, F.; Li, R.; Chen, X.; Wang, K. Emerging Roles of m6A RNA Methylation Regulators in Gynecological Cancer. Front. Oncol. 2022, 12, 827956. [Google Scholar] [CrossRef]
- Wanyama, F.M.; Blanchard, V. Glycomic-Based Biomarkers for Ovarian Cancer: Advances and Challenges. Diagnostics 2021, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Park, H.B.; Baek, K.H.; Hwang, S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes 2023, 14, 886. [Google Scholar] [CrossRef] [PubMed]
- Mussell, A.; Shen, H.; Chen, Y.; Mastri, M.; Eng, K.H.; Bshara, W.; Frangou, C.; Zhang, J. USP1 Regulates TAZ Protein Stability Through Ubiquitin Modifications in Breast Cancer. Cancers 2020, 12, 3090. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Ma, X.; Gao, X.; Ru, Y.; Hu, X.; Gu, X. Recent advances in the potential role of RNA N4-acetylcytidine in cancer progression. Cell Commun. Signal. 2024, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Bischof, H.; Burgstaller, S.; Bourgeois, B.; Malli, R.; Madl, T. Genetically encoded fluorescent sensor to monitor intracellular arginine methylation. J. Photochem. Photobiol. B Biol. 2024, 252, 112867. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Dai, J.; Xu, M.; Liu, J.; Ren, J.; Qin, X.; Kang, X.; Yu, X. Detection of Posttranslational Modification Autoantibodies Using Peptide Microarray. Methods Mol. Biol. 2021, 2344, 99–106. [Google Scholar]
- Cavallaro, S.; Horak, J.; Haag, P.; Gupta, D.; Stiller, C.; Sahu, S.S.; Gorgens, A.; Gatty, H.K.; Viktorsson, K.; Andaloussi, S.E.; et al. Label-Free Surface Protein Profiling of Extracellular Vesicles by an Electrokinetic Sensor. ACS Sens. 2019, 4, 1399–1408. [Google Scholar] [CrossRef]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, J.; Li, L.; Zeng, Y.; Zhao, J.; Li, G. Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity. JACS Au 2024, 4, 4655–4672. [Google Scholar] [CrossRef]
- Zhou, Q.; Pan, Y.; Liang, Q.; Yang, J.; Zhu, S.; Shi, H.; Li, G. Peptide-Guided Assembly of Silver Nanoparticles for the Diagnosis of HER2-Positive Breast Cancer. Anal. Chem. 2024, 96, 19304–19311. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, Z.; Zhao, S.; Chen, F.; Shi, P.; Zhao, N.; Sun, K.; Ye, C.; Lin, C.; Fu, L. Screen-Printed Electrodes as Low-Cost Sensors for Breast Cancer Biomarker Detection. Sensors 2024, 24, 5679. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, C.; Duan, Y.; Cheng, S.; Hu, W. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins. Nanoscale 2023, 15, 16458–16465. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, W.; Li, N.; Yang, M.; Hou, C.; Huo, D. A Clinically Feasible Diagnostic Typing of Breast Cancer Built on a Homogeneous Electrochemical Biosensor for Simultaneous Multiplex Detection. Anal. Chem. 2024, 96, 13870–13878. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Lu, J.; Liang, Q.; Qu, X.; Li, J.; Miao, P.; Yang, J.; Li, G. Construction of Bifunctional Protein/Peptide Complex for Sensitive Detection of Transglutaminase 2. ACS Sens. 2025, 10, 2760–2767. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Zhai, L.; Lv, M.; Iqbal, H.; Ur-Rehman, U.; Ning, X.; Jin, Z.; Yi, Z.; Xiao, R. An overview of Sgc8 aptamer as a potential theranostic agent for cancer with PTK7 oncogenic target. Sci. Prog. 2025, 108, 352295881. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Deng, Y.; Chen, X.; Huo, D.; Li, J.; Yang, M.; Hou, C. The fluorescent biosensor for detecting N6 methyladenine FzD5 mRNA and MazF activity. Anal. Chim. Acta 2021, 1188, 339185. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiao, S.; Zhang, H.; Qiao, Y.; Liu, J.; Li, Y. Highly sensitive and selective demethylase FTO detection using a DNAzyme-mediated CRISPR/Cas12a signal cascade amplification electrochemiluminescence biosensor with C-CN/PCNV heterojunction as emitter. Biosens. Bioelectron. 2024, 256, 116276. [Google Scholar] [CrossRef]
- Onigbinde, S.; Adeniyi, M.; Daramola, O.; Chukwubueze, F.; Bhuiyan, M.M.A.A.; Nwaiwu, J.; Bhattacharjee, T.; Mechref, Y. Glycomics in Human Diseases and Its Emerging Role in Biomarker Discovery. Biomedicines 2025, 13, 2034. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Wang, Y.; Su, W.; Liu, G.; Dong, W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Front. Immunol. 2021, 12, 638573. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Arróliga, M.; Villalobos-Agüero, R.A.; Zamora-Sanabria, R.; Karkashian-Córdoba, J. Molecular analysis of 4/91-like variants of avian infectious bronchitis virus (IBV) obtained after the introduction of a 4/91 live-attenuated vaccine in Costa Rica during 2017. VirusDisease 2025, 36, 81–92. [Google Scholar] [CrossRef] [PubMed]
- van Gent, M.; Chiang, J.J.; Muppala, S.; Chiang, C.; Azab, W.; Kattenhorn, L.; Knipe, D.M.; Osterrieder, N.; Gack, M.U. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J. Virol. 2022, 96, e151021. [Google Scholar] [CrossRef] [PubMed]
- Jin, L. Ubiquitin Signaling in the Immune System. Adv. Exp. Med. Biol. 2024, 1466, 113–122. [Google Scholar]
- Wang, Z.; Ying, J.; Zhang, X.; Miao, C.; Xiao, Y.; Zou, J.; Chen, B. Small-Molecule Modulation of Protein Lipidation: From Chemical Probes to Therapeutics. ChemBioChem 2023, 24, e202300071. [Google Scholar] [CrossRef]
- Tsumagari, K.; Isobe, Y.; Imami, K.; Arita, M. Exploring protein lipidation by mass spectrometry-based proteomics. J. Biochem. 2024, 175, 225–233. [Google Scholar] [CrossRef]
- Dai, D.L.; Li, X.; Wang, L.; Xie, C.; Jin, Y.; Zeng, M.S.; Zuo, Z.; Xia, T.L. Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein-Barr virus infection. J. Biol. Chem. 2021, 296, 100547. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Zhang, X.; Xia, L. RNA m6A methylation regulators in sepsis. Mol. Cell Biochem. 2024, 479, 2165–2180. [Google Scholar] [CrossRef]
- Xiao, Y.; Gao, M.; Mo, X.; Lang, J.; Wang, Z.; Ma, Z.; Yang, M.; Tang, B.; Liu, D.; He, H. Mechanisms and Research Methods of Protein Modification in Virus Entry. Appl. Biochem. Biotech. 2025, 197, 6283–6313. [Google Scholar] [CrossRef]
- Stevenin, V.; Neefjes, J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem. Biol. 2022, 29, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. DNA aptamer against EV-A71 VP1 protein: Selection and application. Virol. J. 2021, 18, 164. [Google Scholar] [CrossRef] [PubMed]
- Madhurantakam, S.; Churcher, N.; Kumar, R.M.; Prasad, S. Electrochemical Label-free Methods for Ultrasensitive Multiplex Protein Profiling of Infectious Diseases. Curr. Med. Chem. 2024, 31, 3857–3869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khan, A.K.; See, D.; Ying, J.Y. Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. ACS Appl. Mater. Inter. 2023, 15, 6561–6571. [Google Scholar] [CrossRef] [PubMed]
- Sheikhzadeh, E.; Beni, V.; Zourob, M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021, 230, 122026. [Google Scholar] [CrossRef]
- He, Y.; Hu, Q.; San, S.; Kasputis, T.; Splinter, M.G.D.; Yin, K.; Chen, J. CRISPR-based biosensors for human health: A novel strategy to detect emerging infectious diseases. TrAC Trends Anal. Chem. 2023, 168, 117342. [Google Scholar] [CrossRef]
- Hsu, F.; Liang, K.; Kumari, M.; Chen, W.Y.; Lin, H.; Cheng, C.M.; Tao, M.; Wu, H. An efficient approach for SARS-CoV-2 monoclonal antibody production via modified mRNA-LNP immunization. Int. J. Pharmaceut. 2022, 627, 122256. [Google Scholar] [CrossRef]
- Shukla, M.; Mahato, K.; Pandya, A. Introduction to emerging biosensing technologies. Prog. Mol. Biol. Transl. 2025, 215, 1–33. [Google Scholar]
- Wu, T.; Liu, G. Non-Invasive Wearables in Inflammation Monitoring: From Biomarkers to Biosensors. Biosensors 2025, 15, 351. [Google Scholar] [CrossRef]
- Liu, W.; Chung, K.; Yu, S.; Lee, L.P. Nanoplasmonic biosensors for environmental sustainability and human health. Chem. Soc. Rev. 2024, 53, 10491–10522. [Google Scholar] [CrossRef]
- Yadav, N.; Tiwari, A.; Pandya, A.; Tripathi, S. Next-generation biosensors for infectious disease surveillance: Innovations, challenges, and global health impact. Prog. Mol. Biol. Transl. 2025, 215, 237–278. [Google Scholar]
- Mun, D.; Bhat, F.A.; Ding, H.; Madden, B.J.; Natesampillai, S.; Badley, A.D.; Johnson, K.L.; Kelly, R.T.; Pandey, A. Optimizing single cell proteomics using trapped ion mobility spectrometry for label-free experiments. Analyst 2023, 148, 3466–3475. [Google Scholar] [CrossRef]
- Vanderaa, C.; Gatto, L. scplainer: Using linear models to understand mass spectrometry-based single-cell proteomics data. Genome Biol. 2025, 26, 237. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Liu, S.; Ren, Y. Mass Spectrometry-based Solutions for Single-cell Proteomics. Genom. Proteom. Bioinf. 2025, 23, qzaf012. [Google Scholar] [CrossRef]
- Sakamoto, W.; Azegami, N.; Konuma, T.; Akashi, S. Single-Cell Native Mass Spectrometry of Human Erythrocytes. Anal. Chem. 2021, 93, 6583–6588. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Liu, B.; Wang, Y.; Liu, K.; Zhao, Y.; Huang, W.E.; Li, B. Isolation and Culture of Single Microbial Cells by Laser Ejection Sorting Technology. Appl. Environ. Microb. 2022, 88, 12. [Google Scholar] [CrossRef] [PubMed]
- Pacocha, N.; Boguslawski, J.; Horka, M.; Makuch, K.; Lizewski, K.; Wojtkowski, M.; Garstecki, P. High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Anal. Chem. 2021, 93, 843–850. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y. Wearable droplet microfluidics. Sci. Bull. 2019, 64, 1472–1473. [Google Scholar] [CrossRef]
- Zhang, L.; Gardner, M.L.; Jayasinghe, L.; Jordan, M.; Aldana, J.; Burns, N.; Freitas, M.A.; Guo, P. Detection of single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of Phi29 DNA packaging motor. Biomaterials 2021, 276, 121022. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, H.; Lei, S.; Leng, Y.; Luo, D.; Xu, Y.; Yin, Z.; Yan, X.; Hang, W. Nanoscale Single-Cell Mass Spectrometry Imaging via Tapered Fiber Projection Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2025, 97, 22330–22340. [Google Scholar] [CrossRef]
- Zhai, J.; Kowsar, A.M.; Wang, Z.; Si, T.; Lin, R.; Xiao, M.; Song, H.; Liu, Y.; Jia, Y.; Yang, M. Teflon wet-on technology for single-cell isolation on digital microfluidic chips: Advancing genomic heterogeneity analysis in cancer research. Talanta 2026, 298, 128833. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Pan, T.; Li, B.; Chu, J. Label-free single-cell isolation enabled by microfluidic impact printing and real-time cellular recognition. Lab Chip 2021, 21, 3695–3706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sohn, C.; Lee, S.; Ahn, H.; Seo, J.; Cao, J.; Cai, L. Detecting protein and post-translational modifications in single cells with iDentification and qUantification sEparaTion (DUET). Commun. Biol. 2020, 3, 420. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D.; Ariyur, A.; Daulatabad, S.V.; Mir, Q.; Janga, S.C. Nm-Nano: A machine learning framework for transcriptome-wide single-molecule mapping of 2′-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets. RNA Biol. 2024, 21, 560–574. [Google Scholar] [CrossRef]
- Strack, R. Spatial proteomics with subcellular resolution. Nat. Methods 2022, 19, 780. [Google Scholar] [CrossRef] [PubMed]
- Körber, A.; Anthony, I.G.M.; Heeren, R.M.A. Mass Spectrometry Imaging. Anal. Chem. 2025, 97, 15517–15549. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, X.; Huang, P.; Tian, R. Spatial proteomics for understanding the tissue microenvironment. Analyst 2021, 146, 3777–3798. [Google Scholar] [CrossRef]
- Vandergrift, G.W.; Veličković, M.; Day, L.Z.; Gorman, B.L.; Williams, S.M.; Shrestha, B.; Anderton, C.R. Untargeted Spatial Metabolomics and Spatial Proteomics on the Same Tissue Section. Anal. Chem. 2025, 97, 392–400. [Google Scholar] [CrossRef]
- Bhatia, H.S.; Brunner, A.; Oeztuerk, F.; Kapoor, S.; Rong, Z.; Mai, H.; Thielert, M.; Ali, M.; Al-Maskari, R.; Paetzold, J.C.; et al. Spatial proteomics in three-dimensional intact specimens. Cell 2022, 185, 5040. [Google Scholar] [CrossRef]
- Horvath, P.; Coscia, F. Spatial proteomics in translational and clinical research. Mol. Syst. Biol. 2025, 21, 526–530. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Li, Y.; Mao, Y.; Su, Y.; Mao, Y.; Yang, Y.; Gao, W.; Fu, C.; Chen, W.; et al. Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity. Nat. Commun. 2024, 15, 10100. [Google Scholar] [CrossRef]
- Tian, S.; Liu, R.; Wu, Z.; Zhang, K. A Novel Strategy Based on Permanent Protein Modifications Induced by Formaldehyde for Food Safety Analysis. Anal. Chem. 2022, 94, 17365–17369. [Google Scholar] [CrossRef]
- Spottel, J.; Brockelt, J.; Badekow, S.; Rohn, S. Immunological Analysis of Isothiocyanate-Modified alpha-Lactalbumin Using High-Performance Thin Layer Chromatography. Molecules 2021, 26, 1842. [Google Scholar] [CrossRef]
- Spottel, J.; Brockelt, J.; Falke, S.; Rohn, S. Characterization of Conjugates between alpha-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability. Molecules 2021, 26, 6247. [Google Scholar] [CrossRef]
- Calvano, C.D.; Bianco, M.; Losito, I.; Cataldi, T. Proteomic Analysis of Food Allergens by MALDI TOF/TOF Mass Spectrometry. Methods Mol. Biol. 2021, 2178, 357–376. [Google Scholar]
- Lopez-Pedrouso, M.; Lorenzo, J.M.; Gagaoua, M.; Franco, D. Current Trends in Proteomic Advances for Food Allergen Analysis. Biology 2020, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, C.; Downs, M. Targeted mass spectrometry quantification of total soy protein residues from commercially processed ingredients for food allergen management. J. Proteomics 2021, 239, 104194. [Google Scholar] [CrossRef] [PubMed]
- Cheubong, C.; Takano, E.; Kitayama, Y.; Sunayama, H.; Minamoto, K.; Takeuchi, R.; Furutani, S.; Takeuchi, T. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts. Biosens. Bioelectron. 2021, 172, 112775. [Google Scholar] [CrossRef] [PubMed]
- Stidham, S.; Villareal, V.; Chellappa, V.; Yoder, L.; Alley, O.; Shreffler, W.; Spergel, J.; Fleischer, D.; Sampson, H.; Gilboa-Geffen, A. Aptamer based point of care diagnostic for the detection of food allergens. Sci. Rep. 2022, 12, 1303. [Google Scholar] [CrossRef]
- Yang, J.; Kuang, H.; Xiong, X.; Li, N.; Song, J. Alteration of the allergenicity of cow’s milk proteins using different food processing modifications. Crit. Rev. Food Sci. 2024, 64, 4622–4642. [Google Scholar] [CrossRef]
- Ham, S.H.; Kim, E.; Han, H.; Lee, M.G.; Choi, Y.J.; Hahn, J. A label-free aptamer-based colorimetric biosensor for rapid gliadin detection in foods: A focus on pasta, bread and cookies. Anal. Methods 2024, 16, 449–457. [Google Scholar] [CrossRef]
- Soleimani, S.; Bruce-Tagoe, T.A.; Ullah, N.; Danquah, M.K. Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. Micromachines 2025, 16, 162. [Google Scholar] [CrossRef]
- Qian, W.; Zhou, J.; Chen, Y.; Liu, H.; Ding, P.; Liu, Y.; Liang, C.; Zhu, X.; Zhang, Y.; Liu, E.; et al. Label-free electrochemical immunosensor based on staphylococcal protein a and AgNPs-rGO-Nf for sensitive detection of virginiamycin M1. Bioelectrochemistry 2023, 153, 108489. [Google Scholar] [CrossRef]
- Svigelj, R.; Zuliani, I.; Grazioli, C.; Dossi, N.; Toniolo, R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. Nanomaterials 2022, 12, 987. [Google Scholar] [CrossRef]
- Ansari, M.A. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. Plants 2023, 12, 2565. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.Z.; Lu, X. Development of a Microfluidic Paper-Based Immunoassay for Rapid Detection of Allergic Protein in Foods. ACS Sens. 2020, 5, 4048–4056. [Google Scholar] [CrossRef]
- Smith, J.W.; O’Meally, R.N.; Burke, S.M.; Ng, D.K.; Chen, J.G.; Kensler, T.W.; Groopman, J.D.; Cole, R.N. Global Discovery and Temporal Changes of Human Albumin Modifications by Pan-Protein Adductomics: Initial Application to Air Pollution Exposure. J. Am. Soc. Mass. Spectr. 2023, 34, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Tao, H.Y.; Duan, Z.; Wang, Y. Environmental Exposure, Epitranscriptomic Perturbations, and Human Diseases. Environ. Sci. Technol. 2025, 59, 6387–6399. [Google Scholar] [CrossRef]
- Nevot, G.; Pol, C.M.; Toloza, L.; Campama-Sanz, N.; Artigues-Lleixa, M.; Aguilera, L.; Guell, M. Engineered Marine Biofilms for Ocean Environment Monitoring. ACS Synth. Biol. 2025, 14, 2797–2809. [Google Scholar] [CrossRef]
- Gao, S.; Huang, X.; Zhang, X.; Yuan, Z.; Chen, H.; Li, Z.; El-Mesery, H.S.; Shi, J.; Zou, X. Empowering protein single-molecule sequencing: Nanopore technology toward sensing gene sequences. Anal. Methods 2025, 17, 3902–3924. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.C.; Espino, J.A.; Jones, L.M.; Polasky, D.A.; Nesvizhskii, A.I. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal. Chem. 2023, 95, 16131–16137. [Google Scholar] [CrossRef]
- Shahriari, S.; Sastry, M.; Panjikar, S.; Singh, R.R. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Kaymaz, S.V.; Nobar, H.M.; Sarigul, H.; Soylukan, C.; Akyuz, L.; Yuce, M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv. Colloid. Interfac. 2023, 322, 103035. [Google Scholar] [CrossRef]
- Qiu, Y.; Qiu, Y.; Zhou, W.; Lu, D.; Wang, H.; Li, B.; Liu, B.; Wang, W. Advancements in functional tetrahedral DNA nanostructures for multi-biomarker biosensing: Applications in disease diagnosis, food safety, and environmental monitoring. Mater. Today Bio 2025, 31, 101486. [Google Scholar] [CrossRef]
- Yang, C.; Yang, C.; Li, X.; Zhang, A.; He, G.; Wu, Q.; Liu, X.; Huang, S.; Huang, X.; Cui, G.; et al. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids. ACS Appl. Mater. Inter. 2021, 13, 4450–4462. [Google Scholar] [CrossRef]
- Hua, X.; Wang, Z.; Wang, Z.; Chen, L.; Zhou, Z.; Ouyang, J.; Deng, K.; Yang, X.; Huang, H. De Novo Development of a Universal Biosensing Platform by Rapid Direct Native Protein Modification. Anal. Chem. 2021, 93, 5291–5300. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Fu, C.; Xia, D.; Wang, F.; Yin, H.; Peng, J. Graphene Oxide-Sensitized Surface Plasmon Resonance Biosensor of Porcine Reproductive and Respiratory Syndrome Virus. Molecules 2022, 27, 3942. [Google Scholar] [CrossRef]
- Tao, J.; Sun, W.; Lu, L. Organic small molecule semiconductor materials for OFET-based biosensors. Biosens. Bioelectron. 2022, 216, 114667. [Google Scholar] [CrossRef]
- Li, Y.; Wei, S.; Xiong, E.; Hu, J.; Zhang, X.; Wang, Y.; Zhang, J.; Yan, J.; Zhang, Z.; Yin, H.; et al. Ultrasensitive 3D Stacked Silicon Nanosheet Field-Effect Transistor Biosensor with Overcoming Debye Shielding Effect for Detection of DNA. Biosensors 2024, 14, 144. [Google Scholar] [CrossRef]
- Liu, H.; Chang, L.; Xu, P. Evaluation of high-throughput detection technology for ubiquitination signals based on ThUBD. Sheng Wu Gong Cheng Xue Bao 2025, 41, 3301–3310. [Google Scholar] [PubMed]
- Behren, S.; Schorlemer, M.; Schmidt, G.; Aktories, K.; Westerlind, U. Antibodies Directed Against GalNAc- and GlcNAc-O-Tyrosine Posttranslational Modifications—A New Tool for Glycoproteomic Detection. Chem.-Eur. J. 2023, 29, e202300392. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Wu, C.; Chiu, C.; Luo, T.-Y.; Wu, J.-Y.; Liao, T.-Z.; Liu, S.-H. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo. J. Transl. Med. 2018, 16, 168. [Google Scholar] [CrossRef]
- Walls, A.C.; Tortorici, M.A.; Frenz, B.; Snijder, J.; Li, W.; A Rey, F.; DiMaio, F.; Bosch, B.-J.; Veesler, D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 2016, 23, 899–905. [Google Scholar] [CrossRef]
- Xu, Y.; Qiao, X.; Song, Z.; Fan, G.; Luo, X. Engineered Branching Peptide as Dual-Functional Antifouling and Recognition Probe: Toward a Dual-Photoelectrode Protein Biosensor with High Accuracy. Anal. Chem. 2023, 95, 14119–14126. [Google Scholar] [CrossRef]
- Ezer, M.; Uygun, Z.O. Python-driven impedance profiling on peptide-functionalized biosensor for detection of HIV gp41 envelope protein. 3 Biotech 2025, 15, 229. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, J.; Huang, Z.; Yang, Y.; Fu, T.; Yang, Y.; Lyu, Y.; Jiang, J.; Qiu, L.; Cao, Z.; et al. Robust Covalent Aptamer Strategy Enables Sensitive Detection and Enhanced Inhibition of SARS-CoV-2 Proteins. ACS Cent. Sci. 2023, 9, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, L.; Huang, L.; Zuo, Z.; Ho, V.; Jin, L.; Lu, Y.; Chen, X.; Zhao, J.; Qian, D.; et al. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection. Analyst 2021, 146, 5380–5388. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Z.; Pang, W.; Huang, S.; Deng, M.; Yao, J.; Huang, Q.; Jin, M.; Shui, L. Integrated biosensor array for multiplex biomarkers cancer diagnosis via in-situ self-assembly carbon nanotubes with an ordered inverse-opal structure. Biosens. Bioelectron. 2024, 262, 116528. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Wittayarat, M.; Namula, Z.; Le, Q.A.; Lin, Q.; Nguyen, N.T.; Takebayashi, K.; Sato, Y.; Tanihara, F.; Otoi, T. Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation. Mol. Biol. Rep. 2020, 47, 5073–5079. [Google Scholar] [CrossRef]
- Kang, D.; Parolo, C.; Sun, S.; Ogden, N.E.; Dahlquist, F.W.; Plaxco, K.W. Expanding the Scope of Protein-Detecting Electrochemical DNA “Scaffold” Sensors. ACS Sens. 2018, 3, 1271–1275. [Google Scholar] [CrossRef]
- Cao, S.; Li, Z.; Zhao, J.; Chen, M.; Ma, N. Rational Engineering a Multichannel Upconversion Sensor for Multiplex Detection of Matrix Metalloproteinase Activities. ACS Sens. 2018, 3, 1522–1530. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. In Situ Formation of Gold Nanoparticles Decorated Ti3C2 MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal. Chem. 2020, 92, 5546–5553. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, P.; Zhu, X.; Lei, C.; Huang, Y.; Nie, Z. Chimeric Peptides Self-Assembling on Titanium Carbide MXenes as Biosensing Interfaces for Activity Assay of Post-translational Modification Enzymes. Anal. Chem. 2020, 92, 8819–8826. [Google Scholar] [CrossRef]
- Mikula, E. Recent Advancements in Electrochemical Biosensors for Alzheimer’s Disease Biomarkers Detection. Curr. Med. Chem. 2021, 28, 4049–4073. [Google Scholar] [CrossRef]
- Hermann, J.; Schurgers, L.; Jankowski, V. Identification and characterization of post-translational modifications: Clinical implications. Mol. Aspects Med. 2022, 86, 101066. [Google Scholar] [CrossRef]
- Udhani, R.; Kothari, C.; Kumar, S. Biosensors and lateral flow immunoassays: Current state and future prospects. Clin. Chim. Acta 2025, 574, 120272. [Google Scholar] [CrossRef]
- Salahandish, R.; Haghayegh, F.; Khetani, S.; Hassani, M.; Nezhad, A.S. Immuno-affinity Potent Strip with Pre-Embedded Intermixed PEDOT:PSS Conductive Polymers and Graphene Nanosheets for Bio-Ready Electrochemical Biosensing of Central Nervous System Injury Biomarkers. ACS Appl. Mater. Interfaces 2022, 14, 28651–28662. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, C.; Zhang, Y.; Zhou, K.; Tan, P.; Liu, Y.; Duan, G.; Li, H.; Chen, C.; Guo, C.; et al. A Nanomaterial-Independent Biosensor Based on Gallium Arsenide High-Electron-Mobility Transistors for Rapid and Ultra-Sensitive Pathogen Detection. ACS Sens. 2025, 10, 3898–3908. [Google Scholar] [CrossRef] [PubMed]
- Agu, C.V.; Cook, R.L.; Martelly, W.; Gushgari, L.R.; Mohan, M.; Takulapalli, B. Multiplexed proteomic biosensor platform for label-free real-time simultaneous kinetic screening of thousands of protein interactions. Commun. Biol. 2025, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Soldanescu, I.; Lobiuc, A.; Caliman-Sturdza, O.A.; Covasa, M.; Mangul, S.; Dimian, M. The Potential of Nanopore Technologies in Peptide and Protein Sensing for Biomarker Detection. Biosensors 2025, 15, 540. [Google Scholar] [CrossRef]
- Hou, L.; Huang, Y.; Hou, W.; Yan, Y.; Liu, J.; Xia, N. Modification-free amperometric biosensor for the detection of wild-type p53 protein based on the in situ formation of silver nanoparticle networks for signal amplification. Int. J. Biol. Macromol. 2020, 158, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Taylor, L.; Varkey, M.; Hoxie, N.; Mohammed, Y.; Goo, Y.A.; Peterman, S.; Moghekar, A.; Yuan, Y.; Glaros, T.; et al. Reinspection of a Clinical Proteomics Tumor Analysis Consortium (CPTAC) Dataset with Cloud Computing Reveals Abundant Post-Translational Modifications and Protein Sequence Variants. Cancers 2021, 13, 5034. [Google Scholar] [CrossRef]
- Farooq, A.; Bhat, K.A.; Mir, R.A.; Mahajan, R.; Nazir, M.; Sharma, V.; Zargar, S.M. Emerging trends in developing biosensor techniques to undertake plant phosphoproteomic analysis. J. Proteomics 2022, 253, 104458. [Google Scholar] [CrossRef]
- Bezuneh, T.T.; Fereja, T.H.; Kitte, S.A.; Li, H.; Jin, Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022, 248, 123611. [Google Scholar] [CrossRef]
- Liu, H.; Xing, X.; Tan, Y.; Dong, H. Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging. Nanophotonics 2022, 11, 4977–4993. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, H.; Li, R.; Zhang, H.; Zhou, R.; Liu, G.L.; Sun, C.; Huang, L. Free Electron Density Gradients Enhanced Biosensor for Ultrasensitive and Accurate Affinity Assessment of the Immunotherapy Drugs. Adv. Sci. 2024, 11, e2404559. [Google Scholar] [CrossRef]
- Ye, H.; Che, J.; Huang, R.; Qi, W.; He, Z.; Su, R. Zwitterionic Peptide Enhances Protein-Resistant Performance of Hyaluronic Acid-Modified Surfaces. Langmuir 2020, 36, 1923–1929. [Google Scholar] [CrossRef]
- Thyer, R.; D’Oelsnitz, S.; Blevins, M.S.; Klein, D.R.; Brodbelt, J.S.; Ellington, A.D. Directed Evolution of an Improved Aminoacyl-tRNA Synthetase for Incorporation of L-3,4-Dihydroxyphenylalanine (L-DOPA). Angew. Chem. Int. Ed. 2021, 60, 14811–14816. [Google Scholar] [CrossRef]
- Barhoum, A.; Sadak, O.; Ramirez, I.A.; Iverson, N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv. Colloid. Interfac. 2023, 317, 102920. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, D.; Hu, X.; Bi, X. Protein N-Terminal Modification: Recent Advances in Chemical and Enzymatic Strategies. Chem-Eur. J. 2025, 31, e1565. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, L.; Gu, Y.; Zhuang, Y.; Fan, X.; Ding, Y. Exploring succinylation in proteins: A comprehensive review from functional improvements to application potential. Food Res. Int. 2025, 213, 116571. [Google Scholar] [CrossRef]
- Lam, A.K.; Frabutt, D.; Li, L.; Xiao, W. Chemical Modifications of the Capsid for Redirecting and Improving the Efficacy of Adeno-Associated Virus Vectors. Hum. Gene Ther. 2021, 32, 1433–1438. [Google Scholar] [CrossRef]
- Mevel, M.; Bouzelha, M.; Leray, A.; Pacouret, S.; Guilbaud, M.; Penaud-Budloo, M.; Alvarez-Dorta, D.; Dubreil, L.; Gouin, S.G.; Combal, J.P.; et al. Chemical modification of the adeno-associated virus capsid to improve gene delivery. Chem. Sci. 2019, 11, 1122–1131. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiao, P.; Kuang, J.; Wang, Z.; Wang, X.; Huang, D.; Guo, Y.; Zhou, L.; Yang, Y.; Ding, S.; et al. Unlocking the Hidden Potential of Cancer Therapy Targeting Lysine Succinylation. J. Cancer 2025, 16, 821–834. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, T.; Zhang, R.; Hao, S.; Dong, J.; Chen, Y.; Zhou, J.; Tian, Y. Lactylation in CNS disorders: Mechanisms, cellular function, and disease relevance. Front. Cell Dev. Biol. 2025, 13, 1566921. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Wang, Q.; Yu, X.; Ouyang, L. Lactate-induced protein lactylation in cancer: Functions, biomarkers and immunotherapy strategies. Front. Immunol. 2024, 15, 1513047. [Google Scholar] [CrossRef]
- Shi, Z.; Nguyen, M.H.; Yao, Y.; Huang, S. High-Throughput Post-Translational Modification Analyses by Reverse Phase Protein Array. Methods Mol. Biol. 2025, 2929, 53–69. [Google Scholar]
- Smith, T.G.; Uzozie, A.C.; Chen, S.; Lange, P.F. Robust unsupervised deconvolution of linear motifs characterizes 68 protein modifications at proteome scale. Sci. Rep. 2021, 11, 22490. [Google Scholar] [CrossRef]
- Mota-Martorell, N.; Jove, F.M.; Fernandez-Bernal, A.; Company-Marin, I.; Juanes-Casado, A.; Pamplona, R. Application of Isotope Dilution Gas Chromatography-Mass Spectrometry Using Selected Ion-Monitoring to Evaluate Nonenzymatic Protein Damage in Cerebrospinal Fluid. Methods Mol. Biol. 2025, 2914, 99–113. [Google Scholar]
- Williard, A.C.; Switzer, H.J.; Howard, C.A.; Yin, R.; Russell, B.L.; Sanyal, R.; Yu, S.; Myers, T.M.; Flood, B.M.; Kerscher, O.; et al. Protein Modification Employing Non-Canonical Amino Acids to Prepare SUMOylation Detecting Bioconjugates. Pharmaceutics 2022, 14, 2826. [Google Scholar] [CrossRef]
- Wu, D.; Liu, T. Studying Reversible Protein Post-translational Modification through Co-translational Modification. ChemBioChem 2023, 24, e202200716. [Google Scholar] [CrossRef]
- Ratinho, L.; Meyer, N.; Greive, S.; Cressiot, B.; Pelta, J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat. Commun. 2025, 16, 3211. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jia, M. Click Chemistry in Detecting Protein Modification. Methods Mol. Biol. 2025, 2854, 75–82. [Google Scholar] [PubMed]
- Sarwar, A.; Shakeel, F.; Fatima, T.; Amin, R.; Rizvi, S.; Hussain, T.; Afzal, A. DNA nanotechnology for next-generation biosensors: Principles, strategies, and challenges. Int. J. Biol. Macromol. 2025, 329, 147825. [Google Scholar] [CrossRef]
- Archibald, M.M.; Rizal, B.; Connolly, T.; Burns, M.J.; Naughton, M.J.; Chiles, T.C. A nanocoaxial-based electrochemical sensor for the detection of cholera toxin. Biosens. Bioelectron. 2015, 74, 406–410. [Google Scholar] [CrossRef]
| Biosensor Platforms | Target Protein | Sensitivity | Specificity | Reference |
|---|---|---|---|---|
| Electrokinetic principle-based biosensor | sEV surface membrane proteins | EGFR: 10% CD63: 3% | Specific interaction-based targeted detection | [105] |
| SERS biosensor (Q-structured TiOx template, quantum-scale regulation + oxygen vacancy introduction) | EGFR | Detection limit as low as 1 nM; maximum enhancement factor (EF) of 3.4 × 107 | Demonstrated for breast and cervical cancer cell lines | [106] |
| Electrochemical biosensor based on peptide-guided assembly of silver nanoparticles (AgNPs) | Human epidermal growth factor receptor 2 (HER2) | Limit of detection (LOD) as low as 0.05 pg/mL | Distinguishes HER2+ and HER2− breast cancer patients; applicable for serum HER2 detection with antifouling performance | [108] |
| Carbon dot-functionalized extended gate organic field effect transistor (OFET) | Carcinoembryonic antigen (CEA) | Limit of detection (LOD) as low as 2.7 pg/mL | High selectivity for carcinoembryonic antigen (CEA) | [110] |
| Electrochemical homogeneous bioplatform based on metal ions/SiO2NPs/magnetic beads | Estrogen receptor (ER), Progesterone receptor (PR), Human epidermal growth factor receptor 2 (HER2), Ki67 | Linear range: 0–1000 pg/mL Detection limits: ER (1.8 pg/mL), PR (1.33 pg/mL), HER2 (2 pg/mL), Ki67 (10.36 pg/mL) Detection time: 140 min | Selectively detects the four target biomarkers; enables simultaneous diagnosis of 10 types of breast cancer directly in human serum | [111] |
| Regulatory Aspect | Traditional IVDs (e.g., Glucose, Cardiac Troponin) | PTM-Based Biosensors | Challenges & Considerations for PTM Biosensors |
|---|---|---|---|
| Analytical Validation | Well-established protocols for specificity, accuracy, precision, and linearity against a known analyte. | Must demonstrate high specificity for the PTM itself, distinct from the unmodified protein and other similar modifications. | Lack of universal gold-standard methods and certified reference materials for many PTMs complicates validation. Specificity assays must rule out cross-reactivity. |
| Clinical Validation | Clear clinical decision points and thresholds are often defined (e.g., diagnostic cutoff for myocardial infarction). | Must establish a robust correlation between the measured PTM level and a specific clinical status or outcome. | The dynamic and heterogeneous nature of PTMs makes defining clinically relevant thresholds complex. Requires large, well-characterized patient cohorts. |
| Standardization & Reproducibility | Focuses on reagent lot consistency and assay reproducibility across instruments and sites. | Must control for variability in nanomaterial synthesis, surface functionalization, and bioreceptor immobilization. | Reproducibility is a major hurdle due to complex fabrication. stringent control over manufacturing processes (CMC *) is critical for regulatory approval. |
| Stability & Shelf-Life | Testing focuses on reagent and signal stability under defined storage conditions. | Must ensure the stability of the delicate sensing interface (e.g., immobilized enzymes, antibodies, nanomaterials). | PTM sensitivity can degrade due to surface fouling or decomposition of biological recognition elements over time. |
| Quality Control | QC testing monitors performance against predefined specifications using control materials. | Requires development of novel control materials that faithfully represent the specific PTM target. | Creating stable, multiplexed control samples containing defined levels of specific PTMs is technically challenging and costly. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Z.; Wang, C.; Zhang, Z.; Wang, H.; Gao, P.; Weng, L. Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy. Biosensors 2026, 16, 21. https://doi.org/10.3390/bios16010021
Xu Z, Wang C, Zhang Z, Wang H, Gao P, Weng L. Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy. Biosensors. 2026; 16(1):21. https://doi.org/10.3390/bios16010021
Chicago/Turabian StyleXu, Zheng, Chu Wang, Ziting Zhang, Heng Wang, Peiyi Gao, and Lixing Weng. 2026. "Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy" Biosensors 16, no. 1: 21. https://doi.org/10.3390/bios16010021
APA StyleXu, Z., Wang, C., Zhang, Z., Wang, H., Gao, P., & Weng, L. (2026). Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy. Biosensors, 16(1), 21. https://doi.org/10.3390/bios16010021

