An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Instruments
2.2. Reagents
2.3. Anodic Pretreatments of SPCEs
2.4. Preparation of OPA Sensors
2.5. Response Time of Hydrogel-Modified SPCEs
2.6. Function and Performance of Hydrogel-Modified SPCEs
2.7. Determination of Cidex-OPA by Commercial OPA Test (Indicator) Strips
3. Results
3.1. Cyclic Voltammetric Characterization
3.2. Acidic Effect on Odixation of the OPA-Glycine-NAC Isoindole
3.3. Optimization of the Glycine and NAC Concentration to OPA
3.4. Response Stability of the OPA-Glycine-NAC Isoindole
3.5. Precision Improvement by Anodic Pre-Treatment of SPCEs
3.6. Response Time of the Hydrogel-Modified Electrochemical Strips
3.7. Comparison between the OPA Sensor and Amperometry with Bare SPCEs in a Batch Test
3.8. Performance Verification by Comparison with Cidex-OPA and Reference OPA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Favero, M.S.; Bond, W.W. Chemical Disinfection of Medical and Surgical Materials. In Disinfection, Sterilization, and Preservation; Block, S.S., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 881–918. [Google Scholar]
- Carlomagno, L.; Huebner, V.D.; Matthews, H.R. Rapid Separation of Phosphoamino Acids Including the Phosphohistidines by Isocratic High-Performance Liquid Chromatography of the Orthophthalaldehyde Derivatives. Anal. Biochem. 1985, 149, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Blundell, G.; Brydon, W.G. High Performance Liquid Chromatography of Plasma Aminoacids Using Orthophthalaldehyde Derivatisation. Clin. Chim. Acta 1987, 170, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.E.; Maillard, J.-Y.; Russell, A.D. Ortho-Phthalaldehyde: A Possible Alternative to Glutaraldehyde for High Level Disinfection. J. Appl. Microbiol. 1999, 86, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Alfa, M.J.; Sitter, D.L. In-Hospital Evaluation of Orthophthalaldehyde as a High Level Disinfectant for Flexible Endoscopes. J. Hosp. Infect. 1994, 26, 15–26. [Google Scholar] [CrossRef]
- Roberts, C.G.; Chan-Myers, H. Mycobactericidal Activity of Dilute Ortho-Phthalaldehyde Solutions. In Proceedings of the Abstracts of Environmental and General Applied Microbiology, Q-265, ASM 98th General Meeting, Atlanta, GA, USA, 17–21 May 1998; pp. 464–465. [Google Scholar]
- Gregory, A.W.; Schaalje, G.B.; Smart, J.D.; Robison, R.A. The Mycobactericidal Efficacy of Ortho-Phthalaldehyde and the Comparative Resistances of Mycobacterium Bovis, Mycobacterium Terrae, and Mycobacterium Chelonae. Infect. Control Hosp. Epidemiol. 1999, 20, 324–330. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jordan, S.L. The Correct Use of Glutaraldehyde in the Healthcare Environment. Gastroenterol. Nurs. 1995, 18, 142–145. [Google Scholar] [CrossRef]
- Pisaniello, D.L.; Gun, R.T.; Tkaczuk, M.N.; Nitshcke, M.; Crea, J. Glutaraldehyde Exposures and Symptoms among Endoscopy Nurses in South Australia. Appl. Occup. Environ. Hyg. 1997, 12, 171–177. [Google Scholar] [CrossRef]
- Ballantyne, B.; Jordan, S.L. Toxicological, Medical and Industrial Hygiene Aspects of Glutaraldehyde with Particular Reference to Its Biocidal Use in Cold Sterilization Procedures. J. Appl. Toxicol. 2001, 21, 131–151. [Google Scholar] [CrossRef]
- Ballantyne, B.; Berman, B. Dermal Sensitizing Potential of Glutaraldehyde: A Review and Recent Observations. J. Toxicol.-Cutan. Ocul. Toxicol. 1984, 3, 251–262. [Google Scholar] [CrossRef]
- Ballantyne, B.; Myers, R.C. The Acute Toxicity and Primary Irritancy of Glutaraldehyde Solutions. Vet. Hum. Toxicol. 2001, 43, 193–202. [Google Scholar]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Hann, A.C. Possible Mechanisms for the Relative Efficacies of Ortho-Phthalaldehyde and Glutaraldehyde against Glutaraldehyde-Resistant Mycobacterium Chelonae. J. Appl. Microbiol. 2001, 91, 80–92. [Google Scholar] [CrossRef]
- Chung, J.; Sepunaru, L.; Plaxco, K.W. On the disinfection of electrochemical aptamer-based sensors. ECS Sens. Plus 2022, 1, 011604. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.P.D.; Goddard, S.V.; Whymant-Morris, A.; Sherwood, J.; Chatterly, R. An Evaluation of Cidex OPA (0.55% ortho-Phthalaldehyde) as an Alternative to 2% Glutaraldehyde for High-Level Disinfection of Endoscopes. J. Hosp. Infect. 2003, 54, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Medicine USA, Reliability Assured with CIDEX® Solution Test Strips. 2022. Available online: https://www.hopkinsmedicine.org/hse/forms/cidexopa/TestStrip.pdf (accessed on 9 March 2022).
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization: An Overview. Am. J. Infect. Control 2013, 41, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- Bowden, K.; El-Kaissi, F.A.; Ranson, R.J. Intramolecular Catalysis. Part 5. The Intramolecular Cannizzaro Reaction of o-Phthalaldehyde and [α,α′-2H2]-o-Phthalaldehyde. J. Chem. Soc. Perkin Trans. II 1990, 12, 2089–2092. [Google Scholar] [CrossRef]
- Ogden, G.; Foldi, P. Amino Acid Analysis: An Overview of Current Methods. LC-GC 1987, 5, 28–38. [Google Scholar]
- Concha-Herrera, V.; Torres-Lapasi, J.R.; Garca-Alvarez-Coque, M.C. Chromatographic Determination of Thiols after Pre-Column Derivatization with o-Phthalaldehyde and Ioleucine. J. Liq. Chromatogr. Relat. Technol. 2005, 27, 1593–1609. [Google Scholar] [CrossRef]
- Roth, M. Fluorescence Reaction for Amino Acids. Anal. Chem. 1971, 43, 880–882. [Google Scholar] [CrossRef]
- Shea, D.; MacCrehan, W.A. Determination of Hydrophilic Thiols in Sediment Porewater Using Ion-pair Liquid Chromatography Coupled to Electrochemical Detection. Anal. Chem. 1988, 60, 1449–1454. [Google Scholar] [CrossRef]
- Bertrand-Harb, C.; Nicolas, M.G.; Dalgalarraondo, M.; Chobert, J.M. Determination of Alkylation Degree by Three Colorimetric Methods and Amino-Acid Analysis. A Comparative Study. Sci. Aliments 1993, 13, 577–584. [Google Scholar]
- Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J. Electrochemical activation of screen-printed carbon strips. Analyst 1996, 121, 345–350. [Google Scholar] [CrossRef]
- Cui, G.; Yoo, J.H.; Lee, J.S.; Yoo, J.; Uhm, J.H.; Cha, G.S.; Nam, H. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 2001, 126, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Sun, J.J.; Xie, Y.; Lin, C.G.; Wang, Y.M.; Yin, W.H.; Chen, G.N. Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Anal. Chim. Acta 2007, 588, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.H.; Davies, P. Electrochemical activity of o-phthalaldehyde—Mercaptoethanol derivatives of amino acids: Application to high-performance liquid chromatographic determination of amino acids in plasma and other biological materials. J. Chromatogr. B Biomed. Sci. Appl. 1983, 277, 125–136. [Google Scholar] [CrossRef]
- Karlsson, C.; Gogoll, A.; Strømme, M.; Sjödin, M. Investigation of the Redox Chemistry of Isoindole-4,7-diones. J. Phys. Chem. C 2013, 117, 894–901. [Google Scholar] [CrossRef]
- Jacobs, W.A. o-Phthalaldehyde—Sulfite derivaization of primary amines for liquid chromatography—Electrochemistry. J. Chromatogr. A 1987, 392, 435–441. [Google Scholar] [CrossRef]
- Stobaugh, J.F.; Repta, A.J.; Sternson, L.A.; Garren, K.W. Factors affecting the stability of fluorescent isoindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines. Anal. Biochem. 1983, 135, 495–504. [Google Scholar] [CrossRef]
- Jacobs, W.A.; Leburg, M.W.; Madaj, E.J. Stability of o-phthalaldehyde-derived isoindoles. Anal. Biochem. 1986, 156, 334–340. [Google Scholar] [CrossRef]
- Trepman, E.; Chen, R.F. Fluorescence stopped-flow study of the o-phthaldialdehyde reaction. Arch. Biochem. Biophys. 1980, 204, 524–532. [Google Scholar] [CrossRef]
- Stobaugh, J.F.; Repta, A.J.; Sternson, L.A. Aspects of the stability of isoindoles derived from the reaction of o-phthalaldehyde—Ethanethiol with primary amino compounds. J. Pharm. Biomed. Anal. 1986, 4, 341–351. [Google Scholar] [CrossRef]
- Chen, W.-C. Development of a USB-Powered Mini-Potentiostat and the Detection of o-Phthalaldehyde Disinfectant. Master’s Thesis, National Taiwan University, Taipei, Taiwan, June 2014. [Google Scholar]
- Chan, Y.Y.; Webster, R.D. Electrochemical Oxidation of the Phenolic Benzotriazoles UV-234 and UV-327 in Organic Solvents. ChemElectroChem 2019, 6, 4297–4306. [Google Scholar] [CrossRef]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef] [PubMed]
Pre-Treatmzent Methods | Repeatability a | Reproducibility b | ||
---|---|---|---|---|
Mean Response (μA) (Mean) | CV (%) | Mean Response (μA) (Mean ± S.D.) | CV (%) | |
Activated in 0.05 M PBS at +1.2 V for 2 min | 36.4 | 4–31% | 39.6 ± 8.70 | 21% |
Activated in Sat. Na2CO3 at +1.2 V for 5 min | 49.8 | 1–3.7% | 51.2 ± 4.17 | 8% |
Soaked in 3 M NaOH for 1 h, and then activated in 0.5 M NaOH at +1.2 V for 20 s | 43.9 | 6–15% | 41.1 ± 6.85 | 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.L.C.; Hsieh, B.-C.; Lin, J.-S.; Cheng, T.-J. An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors 2023, 13, 485. https://doi.org/10.3390/bios13040485
Chen RLC, Hsieh B-C, Lin J-S, Cheng T-J. An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors. 2023; 13(4):485. https://doi.org/10.3390/bios13040485
Chicago/Turabian StyleChen, Richie L. C., Bo-Chuan Hsieh, Jia-Sin Lin, and Tzong-Jih Cheng. 2023. "An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant" Biosensors 13, no. 4: 485. https://doi.org/10.3390/bios13040485
APA StyleChen, R. L. C., Hsieh, B.-C., Lin, J.-S., & Cheng, T.-J. (2023). An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors, 13(4), 485. https://doi.org/10.3390/bios13040485