Hydrazine Intercalation into 2D MoTe2 Field Effect Transistor as Charge Trapping Sites for Nonvolatile Memory Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadke, S.; Kang, M.-A.; Sangwan, V.K.; Hersam, M.C. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem. Rev. 2025, 125, 835–932. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Jiang, L.; Li, J.; Ding, Y.; Wang, S.; Jiang, Y.-G.; Sun, Y.-B.; Wang, J.; Chen, S.; et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 2021, 16, 874–881. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile Memory Cells Based on MoS2 /Graphene Heterostructures. ACS Nano 2013, 7, 3246–3252. [Google Scholar] [CrossRef]
- Yu, J.; Wang, H.; Zhuge, F.; Chen, Z.; Hu, M.; Xu, X.; He, Y.; Ma, Y.; Miao, X.; Zhai, T. Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 2023, 14, 5662. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Li, J.; Chen, X.; Yao, B.; Yu, M.; Lu, T.; Zhang, J. An Ultrafast Nonvolatile Memory with Low Operation Voltage for High-Speed and Low-Power Applications. Adv. Funct. Mater. 2021, 31, 2102571. [Google Scholar] [CrossRef]
- Prajapat, P.; Vashishtha, P.; Gupta, G. High-Temperature Resilient Neuromorphic Device Based on Optically Configured Monolayer MoS2 for Cognitive Computing. Small 2025, 21, 2411596. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Qi, L.; Zou, Y.; Zhang, N.; Zhang, F.; Xiang, H.; Liu, Z.; Qin, M.; Sun, X.; Zheng, Y.; et al. Uncooled near- to long-wave-infrared polarization-sensitive photodetectors based on MoSe2/PdSe2 van der Waals heterostructures. Nat. Commun. 2025, 16, 2774. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Seol, M.; Yoo, J.; Ryu, H.; Ko, D.-S.; Lee, M.-H.; Lee, E.K.; Yoo, M.S.; Lee, G.-H.; Shin, H.-J.; et al. 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nat. Electron. 2024, 7, 356–364. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Wu, F.; Xu, Q.; Tian, J.; Huang, Z.; Wang, Q.; Zhao, X.; Zhang, Q.; Fan, Q.; et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 2024, 15, 1825. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.; Shin, H.-J.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Vashishtha, P.; Kofler, C.; Verma, A.K.; Giridhar, S.P.; Tollerud, J.O.; Dissanayake, N.S.L.; Gupta, T.; Sehrawat, M.; Aggarwal, V.; Mayes, E.L.H.; et al. Epitaxial Interface-Driven Photoresponse Enhancement in Monolayer WS2–MoS2 Lateral Heterostructures. Adv. Funct. Mater. 2025, e12962. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, N.; Chen, Y.; Wang, Y.; Li, Y.; Lin, S. Molecular engineering of polarity control in two-dimensional materials for optoelectronic applications. J. Mater. Chem. C 2025, 13, 9914–9929. [Google Scholar] [CrossRef]
- Lim, J.Y.; Pezeshki, A.; Oh, S.; Kim, J.S.; Lee, Y.T.; Yu, S.; Hwang, D.K.; Lee, G.; Choi, H.J.; Im, S. Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters formed by Atomic-Layer-Deposition-Induced Doping. Adv. Mater. 2017, 29, 1701798. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhu, M.; Peng, G.; Zheng, X.; Miao, F.; Bai, S.; Zhang, X.; Qin, S. Carrier Modulation of Ambipolar Few-Layer MoTe2 Transistors by MgO Surface Charge Transfer Doping. Adv. Funct. Mater. 2018, 28, 1704539. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, Y.; Raju, S.; Wang, Y.; Lin, Z.; Chan, M.; Chai, Y. Carrier Type Control of WSe2 Field-Effect Transistors by Thickness Modulation and MoO3 Layer Doping. Adv. Funct. Mater. 2016, 26, 4223–4230. [Google Scholar] [CrossRef]
- Verma, A.K.; Rahman, A.; Vashishtha, P.; Guo, X.; Sehrawat, M.; Mitra, R.; Giridhar, S.P.; Waqar, M.; Bhoriya, A.; Murdoch, B.J.; et al. Oxygen-Passivated Sulfur Vacancies in Monolayer MoS2 for Enhanced Piezoelectricity. ACS Nano 2025, 19, 3478–3489. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Wang, H.; Chen, X.; Qian, X. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl. Phys. Lett. 2018, 113, 043102. [Google Scholar] [CrossRef]
- Kappera, R.; Voiry, D.; Yalcin, S.E.; Branch, B.; Gupta, G.; Mohite, A.D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134. [Google Scholar] [CrossRef]
- Sales, M.G.; Mazzoni, A.; Sarney, W.L.; Leff, A.C.; Pearson, J.; Najmaei, S.; McDonnell, S. Effects of atmospheric UV-O3 exposure of WSe2 on the properties of the HfO2/WSe2 interface. Appl. Phys. Lett. 2023, 123, 123502. [Google Scholar] [CrossRef]
- Lan, H.-Y.; Lin, C.-P.; Liu, L.; Cai, J.; Sun, Z.; Wu, P.; Tan, Y.; Yang, S.-H.; Hou, T.-H.; Appenzeller, J.; et al. Uncovering the doping mechanism of nitric oxide in high-performance P-type WSe2 transistors. Nat. Commun. 2025, 16, 4160. [Google Scholar] [CrossRef]
- Fang, H.; Chuang, S.; Chang, T.C.; Takei, K.; Takahashi, T.; Javey, A. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 2012, 12, 3788–3792. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Han, C.; Rong, X.; Zhang, X.-W.; Chhowalla, M.; Wee, A.T.S.; Zhang, W. Continuously Tuning Electronic Properties of Few-Layer Molybdenum Ditelluride with in Situ Aluminum Modification toward Ultrahigh Gain Complementary Inverters. ACS Nano 2019, 13, 9464–9472. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Xu, X.; Yang, W.; Hu, M.; Shtansky, D.V.; Golberg, D.; Fang, X. Cross-Bar SnO2 -NiO Nanofiber-Array-Based Transparent Photodetectors with High Detectivity. Adv. Elect. Mater. 2020, 6, 1901048. [Google Scholar] [CrossRef]
- Ke, Y.; Qi, D.; Han, C.; Liu, J.; Zhu, J.; Xiang, Y.; Zhang, W. Facile p-Doping of Few-Layer MoTe2 by Controllable Surface Oxidation toward High-Performance Complementary Devices. ACS Appl. Electron. Mater. 2020, 2, 920–926. [Google Scholar] [CrossRef]
- Qi, D.; Li, P.; Ou, H.; Wu, D.; Lian, W.; Wang, Z.; Ouyang, F.; Chai, Y.; Zhang, W. Graphene-Enhanced Metal Transfer Printing for Strong van der Waals Contacts between 3D Metals and 2D Semiconductors. Adv. Funct. Mater. 2023, 33, 2301704. [Google Scholar] [CrossRef]
- Cheng, Y.; Koo, K.; Liu, Y.; Barsoum, M.L.; Cai, Z.; Farha, O.K.; Hu, X.; Dravid, V.P. Oxidation-Driven Enhancement of Intrinsic Properties in MXene Electrodes for High-Performance Flexible Energy Storage. Adv. Funct. Mater. 2025, 35, 2419650. [Google Scholar] [CrossRef]
- Hussain, I.; Kathiresan, M.; Singh, K.; Kalidasan, B.; Mendhe, A.C.; Islam, M.N.; Meng, K.; Aslam, M.K.; Hanif, M.B.; Al Zoubi, W.; et al. Interface and surface engineering of MXenes and COFs for energy storage and conversion. InfoMat 2025, 7, e70011. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723–1772. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Dai, J.; Huang, Y.; Xie, H.; Jiao, Y.; Yue, W.; Huang, F.; Deng, Y.; Wang, D.; Zhang, Q.; et al. Superior energy storage capacity of polymer-based bilayer composites by introducing 2D ferroelectric micro-sheets. Nat. Commun. 2025, 16, 1180. [Google Scholar] [CrossRef]
- Pan, Y.; Guzman, R.; Li, S.; Xu, W.; Li, Y.; Tang, N.; Yin, H.; He, J.; Wu, A.; Chen, J.; et al. Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. Nat. Synth. 2022, 1, 701–708. [Google Scholar] [CrossRef]
- Davis, C.A.; McKenzie, D.R.; Yin, Y.; Kravtchinskaia, E.; Amaratunga, G.A.J.; Veerasamy, V.S. Substitutional nitrogen doping of tetrahedral amorphous carbon. Philos. Mag. B 1994, 69, 1133–1140. [Google Scholar] [CrossRef]
- Droppa, R., Jr.; Hammer, P.; Carvalho, A.C.M.; dos Santos, M.C.; Alvarez, F. Incorporation of nitrogen in carbon nanotubes. J. Non-Cryst. Solids 2002, 299–302, 874–879. [Google Scholar] [CrossRef]
- Chen, L.-F.; Lu, Y.; Yu, L.; Lou, X.W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783. [Google Scholar] [CrossRef]
- Liu, Z.; Koshino, M.; Suenaga, K.; Mrzel, A.; Kataura, H.; Iijima, S. Transmission Electron Microscopy Imaging of Individual Functional Groups of Fullerene Derivatives. Phys. Rev. Lett. 2006, 96, 088304. [Google Scholar] [CrossRef]
- Mane, R.S. Norbornane derived N-doped sp2 carbon framework as an efficient electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. Fuel 2022, 323, 124420. [Google Scholar] [CrossRef]
- Lin, L.; Feng, Z.; Dong, Z.; Tao, H.; Hu, C. Transition metal disulfide (MoTe2, MoSe2 and MoS2) were modified to improve NO2 gas sensitivity sensing. J. Ind. Eng. Chem. 2023, 118, 533–543. [Google Scholar] [CrossRef]
- Shackery, I.; Pezeshki, A.; Park, J.Y.; Palanivel, U.; Kwon, H.J.; Yoon, H.S.; Im, S.; Cho, J.S.; Jun, S.C. Few-layered α-MoTe2 Schottky junction for a high sensitivity chemical-vapour sensor. J. Mater. Chem. C 2018, 6, 10714–10722. [Google Scholar] [CrossRef]
- Liu, W.; Tkatchenko, A.; Scheffler, M. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces. Acc. Chem. Res. 2014, 47, 3369–3377. [Google Scholar] [CrossRef]
- Klement, P.; Steinke, C.; Chatterjee, S.; Wehling, T.O.; Eickhoff, M. Effects of the Fermi level energy on the adsorption of O2 to monolayer MoS2. 2D Mater. 2018, 5, 045025. [Google Scholar] [CrossRef]
- Panda, M.R.; Gangwar, R.; Muthuraj, D.; Sau, S.; Pandey, D.; Banerjee, A.; Chakrabarti, A.; Sagdeo, A.; Weyland, M.; Majumder, M.; et al. High Performance Lithium-Ion Batteries Using Layered 2H-MoTe2 as Anode. Small 2020, 16, 2002669. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Chen, Z.; Lai, H.; Xie, W.; Xu, J.-B. Defect Etching of Phase-Transition-Assisted CVD-Grown 2H-MoTe2. Small 2021, 17, 2102146. [Google Scholar] [CrossRef]
- Nagai, M.; Takada, J.; Omi, S. XPS Study of Nitrided Molybdena/Titania Catalyst for the Hydrodesulfurization of Dibenzothiophene. J. Phys. Chem. B 1999, 103, 10180–10188. [Google Scholar] [CrossRef]
- Wang, F.; Yin, L.; Wang, Z.; Xu, K.; Wang, F.; Shifa, T.A.; Huang, Y.; Wen, Y.; Jiang, C.; He, J. Strong Electrically Tunable MoTe2/Graphene van der Waals Heterostructures for High-Performance Electronic and Optoelectronic Devices. Appl. Phys. Lett. 2016, 109, 193111. [Google Scholar] [CrossRef]
- Muñoz, M.; Argoul, P.; Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach. Am. Mineral. 2003, 88, 694–700. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Y.; Wen, Q.; Mi, Y.; Liu, Y.; Li, H.; Zhai, T. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021, 14, 4814–4821. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, G.; Wu, J.; Pang, W.K.; Yang, F.; Chen, L.; Johannessen, B.; Guo, Z. Synchrotron X-Ray Absorption Spectroscopy and Electrochemical Study of Bi2O2Se Electrode for Lithium-/Potassium-Ion Storage. Adv. Energy Mater. 2021, 11, 2100185. [Google Scholar] [CrossRef]
- Zhu, X. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 2016, 7, 11210. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Zhang, K. A simple and sensitive method to analyze genotoxic impurity hydrazine in pharmaceutical materials. J. Pharm. Biomed. Anal. 2016, 126, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.-S.; Han, S.-W. Comparison of Fourier-transformed and Wavelet-transformed EXAFS. J. Korean Phys. Soc. 2024, 84, 208–217. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Safonova, O.V.; Palagin, D.; Newton, M.A.; van Bokhoven, J.A. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS. Chem. Sci. 2020, 11, 5299–5312. [Google Scholar] [CrossRef]
- Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Marin, G.B. Advanced Elemental Characterization During Pt–In Catalyst Formation by Wavelet Transformed X-Ray Absorption Spectroscopy. Anal. Chem. 2015, 87, 3520–3526. [Google Scholar] [CrossRef]
- Yamamoto, M.; Wang, S.T.; Ni, M.; Lin, Y.-F.; Li, S.-L.; Aikawa, S.; Jian, W.-B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong Enhancement of Raman Scattering from a Bulk-Inactive Vibrational Mode in Few-Layer MoTe2. ACS Nano 2014, 8, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019–3023. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.-Y.; Zeng, L.; Chen, J.; Wang, R.; Wang, L.-W.; Wu, Y.; Jiang, X. Defects Induced Charge Trapping/Detrapping and Hysteresis Phenomenon in MoS2 Field-Effect Transistors: Mechanism Revealed by Anharmonic Marcus Charge Transfer Theory. ACS Appl. Mater. Interfaces 2022, 14, 2185–2193. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.J.; Razavieh, A.; Nasr, J.R.; Schulman, D.S.; Eichfeld, C.M.; Das, S. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors. ACS Nano 2017, 11, 3110–3118. [Google Scholar] [CrossRef]






| Sample | Shell | CN | R (Å) | σ2 (10−2 Å2) | ∆E0 (eV) | r-Factor (%) |
|---|---|---|---|---|---|---|
| MoTe2 | Te-Mo | 4.9 | 2.73 | 0.7 | −18.2 | 1.0 |
| Te-Te | 2.9 | 2.78 | 0.5 | −18.2 | ||
| Treated-MoTe2 | Te-Mo | 3.9 | 2.74 | 0.7 | −17.4 | 1.3 |
| Te-Te | 2.2 | 2.79 | 0.5 | −17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Wu, Y.; Ou, H.; Wu, D.; Ji, Y.; Qi, D.; Zhang, W. Hydrazine Intercalation into 2D MoTe2 Field Effect Transistor as Charge Trapping Sites for Nonvolatile Memory Applications. Nanomaterials 2025, 15, 1721. https://doi.org/10.3390/nano15221721
Yuan L, Wu Y, Ou H, Wu D, Ji Y, Qi D, Zhang W. Hydrazine Intercalation into 2D MoTe2 Field Effect Transistor as Charge Trapping Sites for Nonvolatile Memory Applications. Nanomaterials. 2025; 15(22):1721. https://doi.org/10.3390/nano15221721
Chicago/Turabian StyleYuan, Li, Yongyu Wu, Haohui Ou, Di Wu, Yuhan Ji, Dianyu Qi, and Wenjing Zhang. 2025. "Hydrazine Intercalation into 2D MoTe2 Field Effect Transistor as Charge Trapping Sites for Nonvolatile Memory Applications" Nanomaterials 15, no. 22: 1721. https://doi.org/10.3390/nano15221721
APA StyleYuan, L., Wu, Y., Ou, H., Wu, D., Ji, Y., Qi, D., & Zhang, W. (2025). Hydrazine Intercalation into 2D MoTe2 Field Effect Transistor as Charge Trapping Sites for Nonvolatile Memory Applications. Nanomaterials, 15(22), 1721. https://doi.org/10.3390/nano15221721

