Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chew, S.A.; De Vos, J.; Beyne, E. Wafer-to-wafer hybrid bonding at 400-nm interconnect pitch. Nat. Rev. Electr. Eng. 2024, 1, 71–72. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Gao, L.Y.; Liu, Z.Q. Review of Cu-Cu direct bonding technology in advanced packaging. Nanotechnology 2025, 36, 262001. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Zeng, Y.P.; Zhao, Y.; Lee, C.; He, M.H.; Liu, Z.F. A Review of Mechanism and Technology of Hybrid Bonding. J. Electron. Packag. 2025, 147, 010801. [Google Scholar] [CrossRef]
- Ait Mani, A.; Levy, F.; Chaira, T.; Peray, P.; Caicedo, N.; Berger, F.; Raphoz, N.; Francou, M.; Boutafa, L.; Miloud-Ali, N.; et al. Cu pillar based Advanced Packaging, for large area & fine pitch heterogeneous devices. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (Estc), Tønsberg, Norway, 15–18 September 2020. [Google Scholar]
- Choi, J.; Jang, S.; Lee, D.; Kang, S.; Kim, S.; Kim, S.E. Characteristics of PVD SiCN for Application in Hybrid Cu Bonding. J. Semicond. Technol. Sci. 2025, 25, 102–108. [Google Scholar] [CrossRef]
- Park, H.; Seo, H.; Kim, Y.; Park, S.; Kim, S.E. Low-Temperature (260 °C) Solderless Cu-Cu Bonding for Fine-Pitch 3-D Packaging and Heterogeneous Integration. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 565–572. [Google Scholar] [CrossRef]
- Kim, Y.S.; Nguyen, T.H.; Choa, S.H. Enhancement of the Bond Strength and Reduction of Wafer Edge Voids in Hybrid Bonding. Micromachines 2022, 13, 537. [Google Scholar] [CrossRef]
- Kitagawa, H.; Sato, R.; Ebiko, S.; Nagata, A.; Ahn, C.; Kim, Y.; Kang, J.; Uedono, A.; Inoue, F. Material-Mechanistic Interplay in SiCN Wafer Bonding for 3D Integration. ACS Omega 2025, 10, 27575–27584. [Google Scholar] [CrossRef]
- Lysaght, P.S.; West, M. Addressing Cu contamination via spin-etch cleaning. Solid State Technol. 1999, 42, 63. [Google Scholar]
- Chu, P.K. Contamination issues in hydrogen plasma immersion ion implantation of silicon—A brief review. Surf. Coat. Technol. 2002, 156, 244–252. [Google Scholar] [CrossRef]
- Kim, M.; Choi, E.; So, J.H.; Maeng, S.; Chung, C.W.; Suh, S.M.; Yun, J.Y. Reduced amount of contamination particle generated by CF4/Ar/O2 plasma corrosion of Y2O3 materials: Influence of defluorination process. Mater. Sci. Semicond. Process. 2023, 167, 107809. [Google Scholar] [CrossRef]
- Selwyn, G.S. Particulate contamination control in plasma processing: Building-in reliability for semiconductor fabrication. In Proceedings of the IEEE 1995 International Integrated Reliability Workshop, Final Report, Lake Tahoe, CA, USA, 22–25 October 1996; pp. 122–129. [Google Scholar]
- Hahn, S.H.; Kim, W.; Shin, D.; Lee, Y.; Kim, S.; Choi, W.; Lim, K.; Moon, B.; Rhee, M. Contamination-Free Cu/SiCN Hybrid Bonding Process Development for Sub-μm Pitch Devices with Enhanced Bonding Characteristics. In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2023; pp. 1390–1396. [Google Scholar]
- Park, S.; Lee, S.; Kim, S.E. Two-Step Ar/N2 Plasma Treatment on SiO2 Surface for Cu/SiO2 Hybrid Bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 723–728. [Google Scholar] [CrossRef]
- Chen, Y.A.; Ong, J.J.; Chiu, W.L.; Hsu, W.Y.; Yang, S.C.; Chang, H.H.; Chen, C. Non-TCB Process Cu/SiO2 Hybrid Bonding Using Plasma-free Hydrophilicity Enhancement with NaOH for Chip-to-wafer Bonding. In Proceedings of the IEEE 74th Electronic Components and Technology Conference, Denver, CO, USA, 28–31 May 2024; pp. 399–403. [Google Scholar]
- He, C.; Zhou, J.Z.; Zhou, R.; Chen, C.; Jing, S.Y.; Mu, K.Y.; Huang, Y.T.; Chung, C.C.; Cherng, S.J.; Lu, Y.; et al. Nanocrystalline copper for direct copper-to-copper bonding with improved cross-interface formation at low thermal budget. Nat. Commun. 2024, 15, 7095. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.H.; Liu, C.S.; Zhou, P. 2D semiconductors for specific electronic applications: From device to system. NPJ 2d Mater. Appl. 2022, 6, 51. [Google Scholar] [CrossRef]
- Lemme, M.C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392. [Google Scholar] [CrossRef] [PubMed]
- Deijkers, J.H.; de Jong, A.A.; Mattinen, M.J.; Schulpen, J.J.P.M.; Verheijen, M.A.; Sprey, H.; Maes, J.W.; Kessels, W.M.M.; Bol, A.A.; Mackus, A.J.M. MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier. Adv. Mater. Interfaces 2023, 10, 2202426. [Google Scholar] [CrossRef]
- Ngo, T.; Zacatzi, A.; Tan, Y.Q.; Lee, D.; Waknis, A.; Vu, N.; Kanjolia, R.; Moinpour, M.; Chen, Z.H. 300mm Wafer-scale ALD-grown MoS2 for Cu diffusion barrier. In Proceedings of the 2024 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 3–6 June 2024. [Google Scholar]
- Mitra, S.; Mahapatra, S. Atomistic description of conductive bridge formation in two-dimensional material based memristor. Npj 2d Mater. Appl. 2024, 8, 26. [Google Scholar] [CrossRef]
- Seok, H.; Lee, D.; Son, S.; Choi, H.; Kim, G.; Kim, T. Beyond von Neumann Architecture: Brain-Inspired Artificial Neuromorphic Devices and Integrated Computing. Adv. Electron. Mater. 2024, 10, 2300839. [Google Scholar] [CrossRef]
- Seok, H.; Megra, Y.T.; Kanade, C.K.; Cho, J.; Kanade, V.K.; Kim, M.; Lee, I.; Yoo, P.J.; Kim, H.U.; Suk, J.W.; et al. Low-Temperature Synthesis of Wafer-Scale MoS-WS Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization. ACS Nano 2021, 15, 707–718. [Google Scholar] [CrossRef]
- Kanade, C.K.; Seok, H.; Kanade, V.K.; Aydin, K.; Kim, H.U.; Mitta, S.B.; Yoo, W.J.; Kim, T. Low-Temperature and Large-Scale Production of a Transition Metal Sulfide Vertical Heterostructure and Its Application for Photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 8710–8717. [Google Scholar] [CrossRef]
- Vu, N.M.; Zacatzi, A.A.; Ghimire, S.; Ngo, T.; Chen, C.; Clark, M.; Kanjolia, R.; Moinpour, M. Evaluation of ALD-grown MoS2 as Cu diffusion barrier using time-dependent dielectric breakdown. In Proceedings of the 2025 IEEE International Interconnect Technology Conference (IITC), Busan, Republic of Korea, 2–5 June 2025; pp. 1–3. [Google Scholar]
- Xu, R.J.; Jang, H.; Lee, M.H.; Arnanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H.J.; Ham, D. Vertical MoS2 Double-Layer Memristor with Electrochemical Metallization as an Atomic-Scale Synapse with Switching Thresholds Approaching 100 mV. Nano Lett. 2019, 19, 2411–2417. [Google Scholar] [CrossRef]
- Sun, W.; Gao, B.; Chi, M.F.; Xia, Q.F.; Yang, J.J.; Qian, H.; Wu, H.Q. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef]
- Ginnaram, S.; Qiu, J.T.; Maikap, S. Controlling Cu Migration on Resistive Switching, Artificial Synapse, and Glucose/Saliva Detection by Using an Optimized AlOx Interfacial Layer in a-COx-Based Conductive Bridge Random Access Memory. ACS Omega 2020, 5, 7032–7043. [Google Scholar] [CrossRef]
- Li, M.J.; Liu, H.F.; Zhao, R.Y.; Yang, F.S.; Chen, M.R.; Zhuo, Y.; Zhou, C.W.; Wang, H.; Lin, Y.F.; Yang, J.J. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 2023, 6, 491–505. [Google Scholar] [CrossRef]
- Lee, J.; Woo, G.; Lee, G.; Jeon, J.; Lee, S.; Wang, Z.; Shin, H.; Lee, G.-W.; Kim, Y.-J.; Lee, D.-H.; et al. Ultrastable 3D Heterogeneous Integration via N-Heterocyclic Carbene Self-Assembled Nanolayers. ACS Appl. Mater. Interfaces 2024, 16, 35505–35515. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, S.J.; Lee, J.S.; Rhi, S.H. Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review. Electronics 2025, 14, 2682. [Google Scholar] [CrossRef]
- Tang, B.S.; Sivan, M.; Leong, J.F.; Xu, Z.F.; Zhang, Y.; Li, J.N.; Wan, R.Y.; Wan, Q.Z.; Zamburg, E.; Thean, A.V.Y. Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: Opportunities and challenges. Npj 2d Mater. Appl. 2024, 8, 74. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Shaikh, S.; Rabinal, M.K. Rapid ambient growth of copper sulfide microstructures: Binder free electrodes for supercapacitor. J. Energy Storage 2020, 28, 101288. [Google Scholar] [CrossRef]
- Taghinejad, H.; Rehn, D.A.; Muccianti, C.; Eftekhar, A.A.; Tian, M.; Fan, T.; Adibi, A.; Zhang, X.; Meng, Y.; Chen, Y.; et al. Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 2018, 12, 12795–12804. [Google Scholar] [CrossRef]
- Taghinejad, H.; Taghinejad, M.; Abdollahramezani, S.; Li, Q.; Woods, E.V.; Tian, M.; Adibi, A.; Eftekhar, A.A.; Lyu, Y.; Zhang, X.; et al. Ion-assisted nanoscale material engineering in atomic layers. Nano Lett. 2025, 25, 10123–10130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Kim, K.; Son, S.; Lee, D.; Je, S.; Kang, J.; Jeong, S.; Kim, D.S.; Lee, M.; Kim, J.; et al. Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer. Nanomaterials 2025, 15, 1600. https://doi.org/10.3390/nano15201600
Choi H, Kim K, Son S, Lee D, Je S, Kang J, Jeong S, Kim DS, Lee M, Kim J, et al. Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer. Nanomaterials. 2025; 15(20):1600. https://doi.org/10.3390/nano15201600
Chicago/Turabian StyleChoi, Hyunbin, Kyungman Kim, Sihoon Son, Dongho Lee, Seongyun Je, Jieun Kang, Sunjae Jeong, Doo San Kim, Minjong Lee, Jiyoung Kim, and et al. 2025. "Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer" Nanomaterials 15, no. 20: 1600. https://doi.org/10.3390/nano15201600
APA StyleChoi, H., Kim, K., Son, S., Lee, D., Je, S., Kang, J., Jeong, S., Kim, D. S., Lee, M., Kim, J., & Kim, T. (2025). Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer. Nanomaterials, 15(20), 1600. https://doi.org/10.3390/nano15201600