(F, K)-Co-Doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Characterization
2.3. Photoelectrochemical Measurements
2.4. Hydrogen Evolution Reaction (HER) Measurements
3. Results and Discussion
3.1. Structure, Morphology, and Optical Properties of Catalysts
3.2. Photocatalytic H2 Evolution Performance
3.3. Mechanistic Investigation of the Enhanced Photocatalytic H2 Production over F(0.15)K(6)CN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuspanov, Z.; Bakbolat, B.; Baimenov, A.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Sci. Total Environ. 2023, 885, 163914. [Google Scholar] [CrossRef] [PubMed]
- Falope, T.; Lao, L.; Hanak, D.; Huo, D. Hybrid energy system integration and management for solar energy: A review. Energ. Convers. Manag. X 2024, 21, 100527. [Google Scholar] [CrossRef]
- Gunawan, D.; Zhang, J.; Li, Q.; Toe, C.Y.; Scott, J.; Antonietti, M.; Guo, J.; Amal, R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. Adv. Mater. 2024, 36, e2404618. [Google Scholar] [CrossRef] [PubMed]
- Kyriakos, P.; Hristoforou, E.; Belessiotis, G.V. Graphitic Carbon Nitride (g-C3N4) in Photocatalytic Hydrogen Production: Critical Overview and Recent Advances. Energies 2024, 17, 3159. [Google Scholar] [CrossRef]
- Ohnishi, A.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Extension of π-conjugated aromatic structure in g-C3N4 nanosheets and their applications into bisphenol E decomposition. J. Solid State Electrochem. 2024, 28, 4527–4549. [Google Scholar] [CrossRef]
- Mengesha, D.N.; Shiferraw, B.T.; Kim, H. Modification of the electronic structure of g-C3N4 using urea to enhance the visible light-assisted degradation of organic pollutants. Environ. Sci. Pollut. Res. Int. 2023, 30, 102910–102926. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 2022, 423, 126944. [Google Scholar] [CrossRef]
- Saman, F.; Se Ling, C.H.; Ayub, A.; Rafeny, N.H.B.; Mahadi, A.H.; Subagyo, R.; Nugraha, R.E.; Prasetyoko, D.; Bahruji, H. Review on synthesis and modification of g-C3N4 for photocatalytic H2 production. Int. J. Hydrogen Energy 2024, 77, 1090–1116. [Google Scholar] [CrossRef]
- Phoon, B.L.; Yang, T.C.K.; Leo, B.F.; Lai, C.W.; Phang, S.W.; Juan, J.C. Mesoporous semi-ionic F-doped g-C3N4 as efficient photocatalyst for tetracycline removal under visible light. Environ. Technol. Innov. 2023, 32, 103303. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Zhou, L.; Liu, C.; Wang, S.; Kang, X. At Least Five: Benefit Origins of Potassium and Sodium Co-Doping on Carbon Nitride for Integrating Pharmaceuticals Degradation and Hydrogen Peroxide Production. Appl. Catal. B Environ. Energy 2025, 361, 124599. [Google Scholar] [CrossRef]
- Peng, D.; Mao, L.; Sun, J.; Li, X.; Shi, H.; Su, Z. S-Scheme Graphitic Carbon Nitride/Nickel Titanate (G-C3N4/NiTiO3) Heterojunction as Bifunctional Photocatalysts for Hydrogen Production and Pollutants Degradation. Int. J. Hydrogen Energy 2025, 114, 60–70. [Google Scholar] [CrossRef]
- Huang, M.; Xu, L.; Jiang, M.; Wang, B. Graphitic Carbon Nitride Modified with 1, 2, 3-Tribromopropane for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2025, 103, 624–632. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Yang, Q.; Zhang, Z.; Fang, X. Mesoporous G-C3N4 Nanosheets Prepared by Calcining a Novel Supramolecular Precursor for High-Efficiency Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2018, 450, 46–56. [Google Scholar] [CrossRef]
- Tai, M.; Che, G.; Zhou, T.; Teng, H.; Liu, C.; Hu, B. Tailoring C-Defect O-Doping and N-Π* Transition Awakened Porous Ultra-Thin Carbon Nitride for Efficient Peroxymonosulfate Activation: Performances and Mechanism Insight. J. Environ. Sci. 2025, 152, 353–367. [Google Scholar] [CrossRef]
- Quan, Y.; Li, R.; Li, X.; Chen, R.; Ng, Y.H.; Huang, J.; Hu, J.; Lai, Y. S-Modified Graphitic Carbon Nitride with Double Defect Sites for Efficient Photocatalytic Hydrogen Evolution. Small 2024, 20, 2406576. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Mao, Y.; Zhang, Y.; Wang, H. Efficient Reduction of Uranyl under Aerobic Conditions by Sodium and Potassium Co-Doped Carbon Nitride. Chem. Eng. J. 2022, 446, 136872. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Cui, J.; Gou, X.; Yang, Q.; Jiang, Y.; Liang, S.; Yang, Z. Simultaneously Engineering K-Doping and Exfoliation into Graphitic Carbon Nitride (G-C3N4) for Enhanced Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 778–787. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Zhang, Y.; Fang, J.; Zhou, Y.; Yuan, S.; Zhang, C.; Chen, W. One-Pot Synthesis of K-Doped G-C3N4 Nanosheets with Enhanced Photocatalytic Hydrogen Production under Visible-Light Irradiation. Appl. Surf. Sci. 2018, 440, 258–265. [Google Scholar] [CrossRef]
- Chang, X.; Fan, H.; Zhu, S.; Lei, L.; Wu, X.; Feng, C.; Wang, W.; Ma, L. Engineering Doping and Defect in Graphitic Carbon Nitride by One-Pot Method for Enhanced Photocatalytic Hydrogen Evolution. Ceram. Int. 2023, 49, 6729–6738. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Q.; Li, Z.; Zhang, Z.; Fang, X. Enhanced Photocatalytic Hydrogen Evolution Performance of Mesoporous Graphitic Carbon Nitride Co-Doped with Potassium and Iodine. Appl. Catal. B Environ. 2018, 221, 362–370. [Google Scholar] [CrossRef]
- Bi, J.; Zhu, L.; Wu, J.; Xu, Y.; Wang, Z.; Zhang, X.; Han, Y. Optimizing Electronic Structure and Charge Transport of Sulfur/Potassium Co-Doped Graphitic Carbon Nitride with Efficient Photocatalytic Hydrogen Evolution Performance. Appl. Organomet. Chem. 2019, 33, e5163. [Google Scholar] [CrossRef]
- Wu, C.J.; He, S.C.; Kuo, T.C.; Wu, J.J. Fluid Mechanical and Visible-Light-Driven Piezophotocatalysis in MoS2/Carbon-Rich Carbon Nitride Heterostructures for Enhanced Green Energy Production and Environmental Remediation. ACS Appl. Mater. Interfaces 2025, 17, 15544. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, J.; Hong, M.; Sun, R. Potassium and Sulfur Dual Sites on Highly Crystalline Carbon Nitride for Photocatalytic Biorefinery and CO2 Reduction. ACS Catal. 2023, 13, 2106–2117. [Google Scholar] [CrossRef]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the G-C3N4 Interlayers for Enhanced Photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, J.; Chen, Q.; Luo, H.; Chen, J.; Wang, R. Enhanced Directional Transfer of Charge Carriers and Optimized Electronic Structure in Fluorine Doped Polymeric Carbon Nitride Nanosheets for Efficient Photocatalytic Water Splitting. Nanoscale 2025, 17, 6004–6016. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, A.; Cheng, R.; Chen, F.; Kannan, P.; Molochas, C.; Tsiakaras, P. Bi, K Co-Doped Graphitic Phase Carbon Nitride for Efficient Photocatalytic H2O2 Production. Chem. Eng. J. 2024, 489, 151145. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Zhang, S.; Liu, Y.; Wang, G.; Sun, C.; Zhao, H. Potassium-Ion-Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible-Light-Driven Photocatalytic Nitrogen Reduction. Angew. Chem. Int. Ed. 2019, 58, 16644–16650. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Pei, J.; Zhou, X.; Chen, S.; Sun, F. In Situ Analysis Photogenerated Electron Transport Behavior of C Self-Doped Carbon Nitride for Photocatalytic H2 Production. ACS Catal. 2024, 14, 12093–12101. [Google Scholar] [CrossRef]
- Cruz, D.; Żółtowska, S.; Savateev, O.; Antonietti, M.; Giusto, P. Carbon Nitride Caught in the Act of Artificial Photosynthesis. Nat. Commun. 2025, 16, 374. [Google Scholar] [CrossRef]
- Huang, J.; Klahn, M.; Tian, X.; Dai, X.; Rabeah, J.; Aladin, V.; Corzilius, B.; Bartling, S.; Lund, H.; Steinfeldt, N. Exfoliated Polymeric Carbon Nitride Nanosheets for Photocatalytic Applications. ACS Appl. Nano Mater. 2024, 7, 7442–7452. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Shi, W.X.; Zhuang, G.L.; Zhao, Q.P.; Ren, J.; Zhang, P.; Yin, H.Q.; Lu, T.B.; Zhang, Z.M. W Single-Atom Catalyst for CH4 Photooxidation in Water Vapor. Adv. Mater. 2022, 34, 2204448. [Google Scholar] [CrossRef]
- Huang, G.; Xiao, B.; Bao, L.; Wang, D.; Luo, Y.; Yan, S.; Gao, H. Crystalline Oxygen-Bridged Carbon Nitride from Self-Assembled Supramolecular Intermediate for Efficient Photocatalytic H2 Evolution. J. Mater. Chem. A 2024, 12, 3480–3488. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, J.; Wang, A.; Kannan, P.; Jing, S.; Chen, F.; Tsiakaras, P. Synthesis of Novel Nanoflowers-Like P, K Co-Doped Graphitic Carbon Nitride for Efficient H2O2 Photoproduction. J. Colloid Interface Sci. 2025, 677, 729–739. [Google Scholar] [CrossRef]
- Yang, D.; Ye, Q.; Qu, C.; Meng, F.; Wang, L.; Li, Y. Visible-Light-Driven F/C Co-Doping G-C3N4 Nanosheets for Efficient Hydrogen Evolution: Charge Redistribution on C4 Delocalized Large Π Bond. Appl. Catal. B Environ. Energy 2025, 361, 124637. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Y.; Feng, F.; Wang, W.; Shi, W.; Zhang, W.; Li, Y.; Lou, H.; Cui, C. A Recyclable Molten-Salt Synthesis of B and K Co-doped g-C3N4 for Photocatalysis of Overall Water Vapor Splitting. Appl. Surf. Sci. 2021, 537, 148014. [Google Scholar] [CrossRef]
- Wang, B.; Li, P.; Hao, H.; He, H.; Cai, H.; Shang, F.; An, B.; Li, X.; Yang, S. The Construction of Phosphorus-Doped g-C3N4/Rh-Doped SrTiO3 with Type-II Band Alignment for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials 2022, 12, 4428. [Google Scholar] [CrossRef]
- Ren, M.; Meng, J.; Yang, Y.; Zhang, X.; Yang, G.; Qin, L.; Guo, Y. Synergy between Palladium Single Atoms and Small Nanoparticles Co-Anchored on Carbon Atom Self-Doped Graphitic Carbon Nitride Boosting Photocatalytic H2 Generation. Appl. Catal. B Environ. Energy 2024, 345, 123680. [Google Scholar] [CrossRef]
- Cao, S.; Yang, H.; Zeng, F.; Lu, Y.; Chen, H.; Jiang, F. Self-Assembly Synthesis of Oxygen and Sulfur Co-Doped Porous Graphitic Carbon Nitride Nanosheets for Boosting CO2 Photoreduction. ChemSusChem 2025, 18, e202401570. [Google Scholar] [CrossRef]
- You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Defects Controlling, Elements Doping, and Crystallinity Improving Triple-Strategy Modified Carbon Nitride for Efficient Photocatalytic Diclofenac Degradation and H2O2 Production. Appl. Catal. B Environ. 2023, 321, 121941. [Google Scholar] [CrossRef]
- Huang, Q.-S.; Li, Q.; Chu, C.; Liu, Q.; Li, Z.; Mao, S. Synergetic Regulation of Electronic Structure of Graphitic Carbon Nitride through Phosphorus and Carbon Co-Doping for Enhanced Photocatalytic CO2 Reduction. Chem. Eng. J. 2024, 482, 149155. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, D.; Li, J.; Wang, X.; Zhu, J.; Francis, P.S.; Zheng, Y. Sulfur and Potassium Co-Doped Graphitic Carbon Nitride for Highly Enhanced Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2020, 273, 119050. [Google Scholar] [CrossRef]
- Zandipak, R.; Bahramifar, N.; Torabi, M.; Calero, M.; Muñoz-Batista, M.J.; Solís, R.R. Synergistic Effect of Graphitic-Like Carbon Nitride and Sulfur-Based Thiazole-Linked Organic Polymer Heterostructures for Boosting the Photocatalytic Degradation of Pharmaceuticals in Water. Chem. Eng. J. 2024, 494, 152843. [Google Scholar] [CrossRef]
- Xia, X.; Xie, C.; Xu, B.; Ji, X.; Gao, G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312. [Google Scholar] [CrossRef]
- Miao, Z.; Xu, F.; Zhao, B.; Song, Y.; Sun, P.; Wu, G.; Xu, K.; Yan, P.; Mo, Z.; Xu, H. P-doped and cyano-modified carbon nitride nanotubes for photocatalytic hydrogen evolution coupled with bisphenol A degradation. J. Colloid Interface Sci. 2025, 686, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Khan, M.Q.; Alsalme, A.; Kim, H. Sulfur-doped graphitic-carbon nitride (S@g-C3N4) as bi-functional catalysts for hydrazine sensing and hydrogen production applications. Synth. Met. 2022, 288, 117100. [Google Scholar] [CrossRef]
- Yang, X.; Tian, Z.; Chen, Y.; Huang, H.; Hu, J.; Wen, B. In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer. J. Alloys Compd. 2021, 859, 157754. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J. 2020, 401, 126135. [Google Scholar] [CrossRef]
- Cao, J.; Jin, X.; Ma, Z.; Wang, H.; Xu, Y.; Guo, Y.; Xie, H.; Zhang, J. One-step synthesis of C quantum dots/C doped g-C3N4 photocatalysts for visible-light-driven H2 production from water splitting. J. Phys. D Appl. Phys. 2022, 55, 444008. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Hasan, I. Improved photocatalytic hydrogen evolution using sulfur-doped graphite-like carbon nitride (S-G-C3N4) photocatalyst. ChemistrySelect 2023, 8, e202302369. [Google Scholar] [CrossRef]
- Liu, R.-Y.; Ding, L.; Yang, G.-D.; Zhang, J.-Y.; Jiao, R.; Sun, H.-Z. Hollow Mo2C nanospheres modified B-doped g-C3N4 for high efficient photocatalysts. J. Phys. D Appl. Phys. 2022, 55, 454001. [Google Scholar] [CrossRef]
- Liu, F.; Li, W.; Wang, L.; Rao, X.; Zheng, S.; Zhang, Y. Sulfur-and strontium-doped graphitic carbon nitride for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 15834–15843. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, F.; Ba, G.; Yu, J.; Hu, H.; Ye, J.; Wang, D. (F, K)-Co-Doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Nanomaterials 2025, 15, 1021. https://doi.org/10.3390/nano15131021
Bi F, Ba G, Yu J, Hu H, Ye J, Wang D. (F, K)-Co-Doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Nanomaterials. 2025; 15(13):1021. https://doi.org/10.3390/nano15131021
Chicago/Turabian StyleBi, Fuhong, Guiming Ba, Junbo Yu, Huilin Hu, Jinhua Ye, and Defa Wang. 2025. "(F, K)-Co-Doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Production" Nanomaterials 15, no. 13: 1021. https://doi.org/10.3390/nano15131021
APA StyleBi, F., Ba, G., Yu, J., Hu, H., Ye, J., & Wang, D. (2025). (F, K)-Co-Doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Nanomaterials, 15(13), 1021. https://doi.org/10.3390/nano15131021