Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. TEM Measurement
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.; Elias, L.R. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1995, 354, 575–583. [Google Scholar] [CrossRef]
- Zuo, J.M.; Yuan, R.; Shao, Y.T.; Hsiao, H.W.; Pidaparthy, S.; Hu, Y.; Yang, Q.; Zhang, J. Data-driven electron microscopy: Electron diffraction imaging of materials structural properties. Microscopy 2022, 71, i116–i131. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; McBride, W.; O’Leary, N.; Oxley, M. Exit wave reconstruction at atomic resolution. Ultramicroscopy 2004, 100, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Harada, K. Interference and interferometry in electron holography. Microscopy 2021, 70, 3–16. [Google Scholar] [CrossRef]
- Rezikyan, A.; Jibben, Z.J.; Rock, B.A.; Zhao, G.; Koeck, F.A.; Nemanich, R.F.; Treacy, M.M. Speckle suppression by decoherence in fluctuation electron microscopy. Microsc. Microanal. 2015, 21, 1455–1474. [Google Scholar] [CrossRef]
- Hamed, A.; El-Ghandoor, H.; El-Diasty, F.; Saudy, M. Analysis of speckle images to assess surface roughness. Opt. Laser Technol. 2004, 36, 249–253. [Google Scholar] [CrossRef]
- Tchvialeva, L.; Markhvida, I.; Zeng, H.; McLean, D.I.; Lui, H.; Lee, T.K. Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile. Opt. Lasers Eng. 2010, 48, 774–778. [Google Scholar] [CrossRef]
- Weiss, J.N. Dynamic Light Scattering (DLS) Spectroscopy. In Dynamic Light Scattering Spectroscopy of the Human Eye; Springer International Publishing: Cham, Switzerland, 2022; pp. 13–17. [Google Scholar] [CrossRef]
- Krajina, B.A.; Tropini, C.; Zhu, A.; DiGiacomo, P.; Sonnenburg, J.L.; Heilshorn, S.C.; Spakowitz, A.J. Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials. ACS Cent. Sci. 2017, 3, 1294–1303. [Google Scholar] [CrossRef]
- Anthuparambil, N.D.; Girelli, A.; Timmermann, S.; Kowalski, M.; Akhundzadeh, M.S.; Retzbach, S.; Senft, M.D.; Dargasz, M.; Gutmüller, D.; Hiremath, A.; et al. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat. Commun. 2023, 14, 5580. [Google Scholar] [CrossRef]
- Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Grübel, G.; Zontone, F. Correlation spectroscopy with coherent X-rays. J. Alloy. Compd. 2004, 362, 3–11. [Google Scholar]
- Sutton, M. A review of X-ray intensity fluctuation spectroscopy. Comptes Rendus Phys. 2008, 9, 657–667. [Google Scholar]
- Lehmkühler, F.; Roseker, W.; Grübel, G. From femtoseconds to hours—measuring dynamics over 18 orders of magnitude with coherent x-rays. Appl. Sci. 2021, 11, 6179. [Google Scholar]
- Chen, S.W.; Guo, H.; Seu, K.A.; Dumesnil, K.; Roy, S.; Sinha, S.K. Jamming Behavior of Domains in a Spiral Antiferromagnetic System. Phys. Rev. Lett. 2013, 110, 217201. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhong, L.; Jangid, R.; Meera; Rippy, G.; Ainslie, K.; Kohne, C.; Everhardt, A.S.; Noheda, B.; Zhang, Y.; et al. Domain fluctuations in a ferroelectric low-strain BaTiO3 thin film. Phys. Rev. Mater. 2020, 4, 114409. [Google Scholar] [CrossRef]
- Lehmkühler, F.; Gutt, C.; Fischer, B.; Schroer, M.A.; Sikorski, M.; Song, S.; Roseker, W.; Glownia, J.; Chollet, M.; Nelson, S.; et al. Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime. Sci. Rep. 2014, 4, 5234. [Google Scholar] [CrossRef]
- Lee, S.; Roseker, W.; Gutt, C.; Fischer, B.; Conrad, H.; Lehmkühler, F.; Steinke, I.; Zhu, D.; Lemke, H.; Cammarata, M.; et al. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt. Express 2013, 21, 24647. [Google Scholar] [CrossRef]
- Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A.D.; Duri, A.; Zontone, F.; Grübel, G.; Dosch, H. X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. Proc. Natl. Acad. Sci. USA 2009, 106, 11511–11514. [Google Scholar]
- Hu, Z.; Donatelli, J.J.; Sethian, J.A. Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients. Proc. Natl. Acad. Sci. USA 2021, 118, e2105826118. [Google Scholar]
- Bjesen, E.; Petersen, T.C.; Martin, A.; Weyland, M.; Liu, A.C. Statistical measures of angular correlations in amorphous materials from electron nano-diffraction in the scanning/transmission electron microscope. J. Phys. Mater. 2020, 3, 044002. [Google Scholar]
- Zhang, P.; He, L.; Besser, M.F.; Liu, Z.; Schroers, J.; Kramer, M.J.; Voyles, P.M. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids. Ultramicroscopy 2017, 178, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, J.; Shimaoka, Y.; Sasaki, H. Precise method for measuring spatial coherence in TEM beams using Airy diffraction patterns. Microscopy 2018, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Herring, R.A. Electron beam coherence measurements using diffracted beam interferometry/holography. J. Electron Microsc. 2009, 58, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.; Erni, R.; Etheridge, J. Method to measure spatial coherence of subangstrom electron beams. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef]
- Velazco, A.; Béché, A.; Jannis, D.; Verbeeck, J. Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings. Ultramicroscopy 2022, 232, 113398. [Google Scholar] [CrossRef] [PubMed]
- Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkühler, F.; Steinke, I.; Sprung, M.; Roseker, W.; et al. Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-ray Regime. Phys. Rev. Lett. 2012, 108, 024801. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts and Company Publishers: Greenwood Village, CO, USA, 2007. [Google Scholar]
- Hytch, M.; Stobbs, W. Quantitative criteria for the matching of simulations with experimental HREM images. Microsc. Microanal. Microstruct. 1994, 5, 133–151. [Google Scholar] [CrossRef][Green Version]
- Thust, A. High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 2009, 102, 220801. [Google Scholar] [CrossRef]
- Van Dyck, D.; Lobato, I.; Chen, F.R.; Kisielowski, C. Do you believe that atoms stay in place when you observe them in HREM? Micron 2015, 68, 158–163. [Google Scholar] [CrossRef]
- Howie, A. Hunting the Stobbs factor. Ultramicroscopy 2004, 98, 73–79. [Google Scholar] [CrossRef]
- Radić, D.; Hilke, S.; Peterlechner, M.; Posselt, M.; Wilde, G.; Bracht, H. Comparison of experimental STEM conditions for fluctuation electron microscopy. Microsc. Microanal. 2020, 26, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, S.; Yamasaki, J. Quantitative measurement of spatial coherence of electron beams emitted from a thermionic electron gun. JOSA A 2021, 38, 1893–1900. [Google Scholar] [CrossRef]
- Miller, P.D.; Gibson, J.M. Connecting small-angle diffraction with real-space images by quantitative transmission electron microscopy of amorphous thin-films. Ultramicroscopy 1998, 74, 221–235. [Google Scholar] [CrossRef]
- Franken, L.E.; Grünewald, K.; Boekema, E.J.; Stuart, M.C. A technical introduction to transmission electron microscopy for soft-matter: Imaging, possibilities, choices, and technical developments. Small 2020, 16, 1906198. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Yamasaki, J.; Tanaka, N. Measurement of spatial coherence of electron beams by using a small selected-area aperture. Ultramicroscopy 2013, 129, 10–17. [Google Scholar] [CrossRef]
- Kisielowski, C.; Specht, P.; Helveg, S.; Chen, F.R.; Freitag, B.; Jinschek, J.; Van Dyck, D. Probing the Boundary between Classical and Quantum Mechanics by Analyzing the Energy Dependence of Single-Electron Scattering Events at the Nanoscale. Nanomaterials 2023, 13, 971. [Google Scholar] [CrossRef]
- Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W.T.; Hwang, I.S.; Stibor, A. Coherent properties of a tunable low-energy electron-matter-wave source. Phys. Rev. A 2018, 97, 013611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.-H.; Lee, J.; Lee, J.I.; Cho, B.-G.; Lee, S. Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials 2023, 13, 3016. https://doi.org/10.3390/nano13233016
Kwon J-H, Lee J, Lee JI, Cho B-G, Lee S. Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials. 2023; 13(23):3016. https://doi.org/10.3390/nano13233016
Chicago/Turabian StyleKwon, Ji-Hwan, Joohyun Lee, Je In Lee, Byeong-Gwan Cho, and Sooheyong Lee. 2023. "Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material" Nanomaterials 13, no. 23: 3016. https://doi.org/10.3390/nano13233016
APA StyleKwon, J.-H., Lee, J., Lee, J. I., Cho, B.-G., & Lee, S. (2023). Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials, 13(23), 3016. https://doi.org/10.3390/nano13233016