Nanograss-Assembled NiCo2S4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Material Synthesis
2.3.1. Counter Electrode Fabrication on FTO-Coated Glass
2.3.2. Preparation of Photoanode and DSSC Assembly
3. Results and Discussion
3.1. Formation Mechanism
3.2. Structural and Morphological Studies
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGehee, M.D. Paradigm Shifts in Dye-Sensitized Solar Cells. Science 2011, 334, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Hao, S.; Yang, C.; Chen, G. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Nanomaterials 2015, 5, 1782–1809. [Google Scholar] [CrossRef]
- Halim, M.A. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials 2012, 3, 22–47. [Google Scholar] [CrossRef]
- Kulkarni, P.; Nataraj, S.K.; Balakrishna, R.G.; Nagaraju, D.H.; Reddy, M.V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 2017, 5, 22040–22094. [Google Scholar] [CrossRef]
- Iftikhar, H.; Sonai, G.G.; Hashmi, S.G.; Nogueira, A.F.; Lund, P.D. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12, 1998. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chebrolu, V.T.-V. Chemical bath deposition of NiCo2S4 nanostructures supported on a conductive substrate for efficient quantum-dot-sensitized solar cells and methanol oxidation. New J. Chem. 2018, 42, 18824–18836. [Google Scholar] [CrossRef]
- Biswas, S.; Kim, H. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12, 1338. [Google Scholar] [CrossRef]
- Ma, X.; Fu, J.; Gao, L.; Zhang, J.; Tao, S.; Guo, W.; Liu, X.; Yang, B.; Lu, J. Dual-duty NiCo2S4 nanosheet-based solar rechargeable batteries toward multi-scene solar energy conversion and storage. Nanoscale 2023, 15, 10584–10592. [Google Scholar] [CrossRef]
- Khoo, S.Y.; Miao, J.; Yang, H.B.; He, Z.; Leong, K.C.; Liu, B.; Tan, T.T.Y. One-Step Hydrothermal Tailoring of NiCo2S4 Nanostructures on Conducting Oxide Substrates as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. Adv. Mater. Interfaces 2015, 2, 1500384. [Google Scholar] [CrossRef]
- Huang, N.; Zhang, S.; Huang, H.; Liu, J.; Sun, Y.; Sun, P.; Bao, C.; Zheng, L.; Sun, X.; Zhao, X. Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochim. Acta 2016, 192, 521–528. [Google Scholar] [CrossRef]
- Xue, G.; Bai, T.; Wang, W.; Wang, S.; Ye, M. Recent advances in various applications of nickel cobalt sulfide-based materials. J. Mater. Chem. A 2022, 10, 8087–8106. [Google Scholar] [CrossRef]
- Qiu, J.; He, D.; Wang, H.; Li, W.; Sun, B.; Ma, Y.; Lu, X.; Wang, C. Morphology-controlled fabrication of NiCo2S4 nanostructures decorating carbon nanofibers as low-cost counter electrode for efficient dye-sensitized solar cells. Electrochim. Acta 2020, 367, 137451. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Liu, S.; Liang, B.; Zhang, Y.; Zhang, W. One-step hydrothermal synthesis of NiCo2S4 loaded on electrospun carbon nanofibers as an efficient counter electrode for dye-sensitized solar cells. Sol. Energy 2020, 202, 358–364. [Google Scholar] [CrossRef]
- Nan, H.; Han, J.; Luo, Q.; Yin, X.; Zhou, Y.; Yao, Z.; Zhao, X.; Li, X.; Lin, H. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Appl. Surf. Sci. 2018, 437, 227–232. [Google Scholar] [CrossRef]
- Xia, C.; Li, P.; Gandi, A.N.; Schwingenschlögl, U.; Alshareef, H.N. Is NiCo2S4 Really a Semiconductor? Chem. Mater. 2015, 27, 6482–6485. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Chou, S.-W. Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochem. Commun. 2013, 37, 11–14. [Google Scholar] [CrossRef]
- Rao, S.S.; Durga, I.K.; Kundakarla, N.; Punnoose, D.; Gopi, C.V.V.M.; Reddy, A.E.; Jagadeesh, M.; Kim, H.-J. A hydrothermal reaction combined with a post anion-exchange reaction of hierarchically nanostructured NiCo2S4 for high-performance QDSSCs and supercapacitors. New J. Chem. 2017, 41, 10037–10047. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Chen, X.; Liu, X.; Zhuang, G.; Zhang, Z. Porous tremella-like NiCo2S4 networks electrodes for high-performance dye-sensitized solar cells and supercapacitors. Sol. Energy 2018, 176, 762–770. [Google Scholar] [CrossRef]
- Anuratha, K.S.; Ramaprakash, M.; Panda, S.K.; Mohan, S. Studies on synergetic effect of rGO-NiCo2S4 nanocomposite as an effective counter electrode material for DSSC. Ceram. Int. 2017, 43, 10174–10182. [Google Scholar] [CrossRef]
- Su, P.; Jiao, Q.; Li, H.; Li, Y.; Liu, X.; Wu, Q.; Shi, D.; Zhao, Y.; Wang, T.; Wang, W. Rational Design of NiCo2S4 Quantum Dot-Modified Nitrogen-Doped Carbon Nanotube Composites as Robust Pt-Free Electrocatalysts for Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2021, 4, 4344–4354. [Google Scholar] [CrossRef]
- Deng, J.; Wang, M.; Song, X.; Yang, Z.; Yuan, Z. Ti Porous Film-Supported NiCo2S4 Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Nanomaterials 2018, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, Y.; Meng, W.; Zhou, T.; Li, B.; Wei, T.; Sun, Y. Honeycomb-like NiCo2S4nanosheets prepared by rapid electrodeposition as a counter electrode for dye-sensitized solar cells. Nanotechnology 2017, 28, 345403. [Google Scholar] [CrossRef]
- Gayathri, V.; Peter, I.J.; Ramachandran, K.; Karazhanov, S.; Mohan, C.R. Graphene Quantum Dots Embedded in NiCo2S4/MWCNT Nanocomposite as a Promising Candidate for Supercapacitors and I3– Reduction in Dye-Sensitized Solar Cells. Energy Fuels 2021, 35, 13360–13369. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Fu, Y.; Han, X.; Wang, Y.; Zhang, Y.; Zhang, W.; Li, L. NiCo2S4 nanotube arrays grown in situ on Ni foam as a low-cost counter electrode for dye-sensitized solar cells. Sol. Energy 2021, 225, 297–304. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Zhao, Y.; Wei, A.; Liu, Z. Synthesis of NiCo2S4 nanowire arrays through ion exchange reaction and their application in Pt-free counter-electrode. Mater. Lett. 2016, 166, 154–157. [Google Scholar] [CrossRef]
- Liu, K.; Wei, A.; Liu, J.; Liu, Z.; Xiao, Z.; Zhao, Y. NiCo2S4 nanosheet thin film counter electrodes prepared by a two-step approach for dye-sensitized solar cells. Mater. Lett. 2018, 217, 185–188. [Google Scholar] [CrossRef]
- Dostagir, N.H.M.D.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J.-Y.; Asakura, K.; Fukouka, A.; Shrotri, A. Co Single Atoms in ZrO2 with Inherent Oxygen Vacancies for Selective Hydrogenation of CO2 to CO. ACS Catal. 2021, 11, 9450–9461. [Google Scholar] [CrossRef]
- Su, A.-L.; Lu, M.-N.; Chang, C.-Y.; Wei, T.-C.; Lin, J.-Y. Scalable Fabrication of Efficient NiCo2S4 Counter Electrodes for Dye-sensitized Solar Cells Using a Facile Solution Approach. Electrochim. Acta 2016, 222, 1410–1416. [Google Scholar] [CrossRef]
- Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2016, 26, 4661–4672. [Google Scholar] [CrossRef]
- Koolen, C.D.; Luo, W.; Züttel, A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO2 Electroreduction. ACS Catal. 2022, 13, 948–973. [Google Scholar] [CrossRef]
- Li, M.; Hua, B.; Wang, L.-C.; Sugar, J.D.; Wu, W.; Ding, Y.; Li, J.; Ding, D. Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nat. Catal. 2021, 4, 274–283. [Google Scholar] [CrossRef]
- Zhang, J.; Pham, T.H.M.; Ko, Y.; Li, M.; Yang, S.; Koolen, C.D.; Zhong, L.; Luo, W.; Züttel, A. Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. Cell Rep. Phys. Sci. 2022, 3, 100949. [Google Scholar] [CrossRef]
- Shi, Z.; Deng, K.; Li, L. Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells. Sci. Rep. 2015, 5, 9317. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Zhou, M.; Zhao, S.; Wang, Q.; Ding, B. Copper indium disulphide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells. J. Power Sources 2016, 315, 79–85. [Google Scholar] [CrossRef]
- Xiao, J.; Zeng, X.; Chen, W.; Xiao, F.; Wang, S. High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem. Commun. 2013, 49, 11734–11736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Deng, L.; Zhang, P.; Ren, X.; Li, Y. Electrospun NiCo2S4 with extraordinary electrocatalytic activity as counter electrodes for dye-sensitized solar cells. J. Solid State Electrochem. 2017, 21, 3579–3588. [Google Scholar] [CrossRef]
Electrodes | Voc (V) | Jsc (mA·cm−2) | FF | PCE (%) |
---|---|---|---|---|
Pt | 0.75 | 13.98 | 67.68 | 7.19 |
NCS-1 | 0.75 | 13.05 | 66.56 | 6.60 |
NCS-2 | 0.74 | 13.04 | 63.21 | 6.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, S.A. Nanograss-Assembled NiCo2S4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell. Nanomaterials 2023, 13, 2896. https://doi.org/10.3390/nano13212896
Alsharif SA. Nanograss-Assembled NiCo2S4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell. Nanomaterials. 2023; 13(21):2896. https://doi.org/10.3390/nano13212896
Chicago/Turabian StyleAlsharif, Shada A. 2023. "Nanograss-Assembled NiCo2S4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell" Nanomaterials 13, no. 21: 2896. https://doi.org/10.3390/nano13212896
APA StyleAlsharif, S. A. (2023). Nanograss-Assembled NiCo2S4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell. Nanomaterials, 13(21), 2896. https://doi.org/10.3390/nano13212896