Nanomaterials in Cosmetics: Recent Updates
Abstract
:1. Introduction
2. Types of Nanomaterials in Cosmetics
2.1. Inorganic Nanoparticles
2.2. Silica (SiO2)
2.3. Carbon Black (Nano)
2.4. Nano-Organic Materials
2.5. Nano-Hydroxyapatite
2.6. Gold and Silver Nanoparticles
2.7. Nanoliposomes
2.8. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC)
2.9. Nanocapsules
2.10. Dendrimers
2.11. Nanoemulsions
2.12. Other Types
3. Safety Considerations
4. Regulations
5. Perspectives/Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Santos, A.C.; Panchal, A.; Rahman, N.; Pereira-Silva, M.; Pereira, I.; Veiga, F.; Lvov, Y. Evolution of hair treatment and care: Prospects of nanotube-based formulations. Nanomaterials 2019, 9, 903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Pastrana, H.; Avila, A.; Tsai, C.S.J. Nanomaterials in cosmetic products: The challenges with regard to current legal frameworks and consumer exposure. Nano Ethics 2018, 12, 123–137. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Ottolenghi, L.; Gaillard, C.; Bourgeois, D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revia, R.A.; Wagner, B.A.; Zhang, M. A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials 2019, 9, 1317. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) No 1223/2009. Available online: https://ec.europa.eu/growth/sectors/cosmetics/products/nanomaterials_en (accessed on 14 April 2020).
- Ahmad, U.; Ahmad, Z.; Khan, A.A.; Akhtar, J.; Singh, S.P.; Ahmad, F.J. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res. 2018, 68, 545–552. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioall. Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Rigano, L.; Lionetti, N. Nanobiomaterials in galenic formulations and cosmetics. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 121–148. [Google Scholar]
- L’Oreal. What Are Nanoparticles? Available online: https://inside-our-products.loreal.com/ingredients/nanoparticles (accessed on 14 April 2020).
- Shiseido. What Is Nano Particles? Available online: https://our-products-policy.shiseido.com/en/ingredients/nano-particles (accessed on 14 April 2020).
- Singh, P.; Nanda, A. Nanotechnology in cosmetics: A boon or bane? Toxicol. Environ. Chem. 2012, 94, 1467–1479. [Google Scholar] [CrossRef]
- SCCS. Guidance on the Safety Assessment of Nanomaterials in Cosmetics; SCCS/1611/19; Scientific Committee on Consumer Safety: Brussels, Belgium, 2019. [Google Scholar]
- FDA. Final Guidance for Industry—Safety of Nanomaterials in Cosmetic Products. Available online: https://www.fda.gov/media/83957/download2014 (accessed on 14 April 2020).
- European Union Observatory for Nanomaterials (EUON). Available online: https://euon.echa.europa.eu/ (accessed on 26 April 2020).
- Cornier, J.; Keck, C.; Voorde, M. Nanocosmetics from Ideas to Products: From Ideas to Products; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Monsé, C.; Hagemeyer, O.; Raulf, M.; Jettkant, B.; van Kampen, V.; Kendzia, B.; Gering, V.; Kappert, G.; Weiss, T.; Ulrich, N. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. FIBRE Toxicol. 2018, 15, 8. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nafisi, S.; Schafer-Korting, M.; Maibach, H.I. Measuring silica nanoparticles in the skin. In Agache’s Measuring the Skin; Humbert, P., Fanian, F., Maibach, H., Agache, P., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Is It Safe to Use Cosmetics Containing Silica in Nanoform? Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/docs/citizens_nanosilica_en.pdf (accessed on 14 April 2020).
- Poland, C.A.; Larsen, P.B.; Read, S.A.K.; Varet, J.; Hankin, S.M.; Lam, H.R. Assessment if Nano-Enabled Technologies in Cosmetics; The Danish Environmental Protection Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J.A.D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Mebert, A.M.; Baglole, C.J.; Desimone, M.F.; Maysinger, D. Nanoengineered silica: Properties, applications and toxicity. Food Chem. Toxicol. 2017, 109, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, M.; Shirosaki, Y.; Yoshimatsu Yasutomi, S.; Miyazaki, T.; Monteiro, F.J. Enhanced biosafety of silica coated gadolinium based nanoparticles. J. Mater. Sci. Mater. Med. 2017, 28, 46. [Google Scholar] [CrossRef] [PubMed]
- Winkler, H.C.; Suter, M.; Naegeli, H. Critical review of the safety assessment of nano-structured silica additives in food. J. Nanobiotechnol. 2016, 14, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-H.; Kim, J.N.; Jeong, S.H.; Choi, J.E.; Lee, S.-H.; Choi, B.H.; Lee, J.P.; Sohn, K.H.; Park, K.L.; Kim, M.-K. Assessment of dermal toxicity of Nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 2010, 267, 178–181. [Google Scholar] [CrossRef]
- Sahu, D.; Kannan, G.M.; Vijayaraghavan, R. Carbon black particle exhibits size dependent toxicity in human monocytes. Int. J. Inflam. 2014, 2014, 827019. [Google Scholar] [CrossRef] [Green Version]
- Scientific Committee on Consumer; Chaudhry, Q. Opinion of the scientific committee on consumer safety (SCCS)—Second revision of the opinion on carbon black, nano-form, in cosmetic products. Regul. Toxicol. Pharmacol. 2016, 79, 103–104. [Google Scholar] [CrossRef]
- Couteau, C.; Paparis, E.; Chauvet, C.; Coiffard, L. Tris-biphenyl triazine, a new ultraviolet filter studied in terms of photoprotective efficacy. Int. J. Pharm. 2015, 487, 120–123. [Google Scholar] [CrossRef]
- Triazine, B. TINOSORB® A2B. Available online: https://www.carecreations.basf.com/product-formulations/product-highlights/product-highlights-detail/TINOSORB-A2B/30478125 (accessed on 14 April 2020).
- Doak, S.H. Opinion of the scientific committee on consumer safety (SCCS)—Opinion on the use of 2,2’-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) (nano)—S79—In cosmetic products. Regul. Toxicol. Pharmacol. 2016, 76, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.C.; Grenho, L.; Gomes, P.S.; Quadros, P.A.; Fernandes, M.H. Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment. Sci. Rep. 2019, 99, 11050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernauer, U. Opinion of the scientific committee on consumer safety (SCCS)—Revision of the opinion on hydroxyapatite (nano) in cosmetic products. Regul. Toxicol. Pharmacol. 2018, 98, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Ramis, J.M.; Coelho, C.C.; Córdoba, A.; Quadros, P.A.; Monjo, M. Safety assessment of nano-hydroxyapatite as an oral care ingredient according to the EU Cosmetics Regulation. Cosmetics 2018, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chen, C.P.; Wu, T.H.; Yang, C.H.; Lin, C.W.; Chen, C.Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- Chavva, S.R.; Deshmukh, S.K.; Kanchanapally, R.; Tyagi, N.; Coym, J.W.; Singh, A.P.; Singh, S. Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: Potential synergistic interactions. Nanomaterials 2019, 9, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Amatori, S.; Porchia, M.; Tisato, F.; Bondino, F.; Magnano, E.; Pellei, M. Highly hydrophilic gold nanoparticles as carrier for anticancer copper(I) complexes: Loading and release studies for biomedical applications. Nanomaterials 2019, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Aquino, C.; Costero, A.M.; Gil, S.; Gaviña, P. Resorcinol functionalized gold nanoparticles for formaldehyde colorimetric detection. Nanomaterials 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Nancy, P.; Nair, A.K.; Antoine, R.; Thomas, S.; Kalarikkal, N. In situ decoration of gold nanoparticles on graphene oxide via nanosecond laser ablation for remarkable chemical sensing and catalysis. Nanomaterials 2019, 9, 1201. [Google Scholar] [CrossRef] [Green Version]
- Penninckx, S.; Heuskin, A.C.; Michiels, C.; Lucas, S. Thioredoxin reductase activity predicts gold nanoparticle radiosensitization effect. Nanomaterials 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Rout, A.; Boltaev, G.S.; Ganeev, R.A.; Fu, Y.; Maurya, S.K.; Kim, V.V.; Srinivasa Rao, K.; Guo, C. Nonlinear optical studies of gold nanoparticle films. Nanomaterials 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Schavkan, A.; Gollwitzer, C.; Garcia-Diez, R.; Krumrey, M.; Minelli, C.; Bartczak, D.; Cuello-Nuñez, S.; Goenaga-Infante, H.; Rissler, J.; Sjöström, E. Number concentration of gold nanoparticles in suspension: SAXS and spICPMS as traceable methods compared to laboratory methods. Nanomaterials 2019, 9, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, I.O.; Ladchumananandasivam, R.; Nascimento, J.H.O.; Silva, K.K.O.S.; Oliveira, F.R.; Souto, A.P.; Felgueiras, H.P.; Zille, A. Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 2019, 9, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, P.; Qi, Y.; Wang, R.; Wu, J.; Li, X. Aqueous gold nanoparticles generated by ac and pulse-power-driven plasma jet. Nanomaterials 2019, 9, 1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Liu, G. Electrochemical deposition of gold nanoparticles on reduced graphene oxide by fast scan cyclic voltammetry for the sensitive determination of As(III). Nanomaterials 2019, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.M.; Abdallah, B.M. Effective inhibition of candidiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles. Nanomaterials 2020, 10, 422. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M.D.; Fernández, M.J. Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials 2020, 10, 376. [Google Scholar] [CrossRef] [Green Version]
- Ghodake, G.; Kim, M.; Sung, J.S.; Shinde, S.; Yang, J.; Hwang, K.; Kim, D.Y. Extracellular synthesis and characterization of silver nanoparticles—Antibacterial activity against multidrug-resistant bacterial strains. Nanomaterials 2020, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.; Lee, J.S.; Park, K.D.; Ching, Y.C.; Nguyen, X.T.; Phan, V.H.G.; Thi, T.T.H. Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials 2020, 10, 542. [Google Scholar] [CrossRef] [Green Version]
- Tasche, D.; Weber, M.; Mrotzek, J.; Gerhard, C.; Wieneke, S.; Möbius, W.; Höfft, O.; Viöl, W. In situ investigation of the formation kinematics of plasma-generated silver nanoparticles. Nanomaterials 2020, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Huang, L.J.; Wang, Y.X.; Du, Y.C.; Zhang, Z.J.; Wang, Y.; Kipper, M.J.; Belfiore, L.A.; Tang, J.G. Graphene oxide nanofiltration membranes containing silver nanoparticles: Tuning separation efficiency via nanoparticle size. Nanomaterials 2020, 10, 454. [Google Scholar] [CrossRef] [Green Version]
- Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. Hindawi 2014. [Google Scholar] [CrossRef] [PubMed]
- SCCS. Opinion on Colloidal Silver (Nano). Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_219.pdf (accessed on 14 April 2020).
- Katz, L.M.; Dewan, K.; Bronaugh, R.L. Nanotechnology in cosmetics. Food Chem. Toxicol. 2015, 85, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 33, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, N.; Simonetti, G.; Bougnol, F.; Scalzo, M. Electrochemical Ag+ for preservative use. Appl. Environ. Microbiol. 1992, 58, 3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.; Bowler, P.; Walker, M.; Parsons, D. Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen. 2004, 12, 288–294. [Google Scholar] [CrossRef]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces 2019, 183, 110416. [Google Scholar] [CrossRef]
- Cao, M.; Li, J.; Tang, J.; Chen, C.; Zhao, Y. Gold nanomaterials in consumer cosmetics nanoproducts: Analyses, characterization, and dermal safety assessment. Small 2016, 12, 5488–5496. [Google Scholar] [CrossRef]
- Xu, X.; Costa, A.P.; Khan, M.A.; Burgess, D.J. Application of quality by design to formulation and processing of protein liposomes. Int. J. Pharm. 2012, 434, 349–359. [Google Scholar] [CrossRef]
- Joshny, J.B.N.; Hari, V.D.; Devi, R. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci. 2017, 112, 31–58. [Google Scholar]
- Pardeike, J.; Hommoss, A.; Müller, R. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2008, 366, 170–184. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Shreya Kaul, N.G.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm. 2018. [Google Scholar] [CrossRef] [Green Version]
- Nafisi, S.; Maibach, H.I. Nanotechnology in Cosmetics, in Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–369. [Google Scholar]
- Poletto, F.S.; Beck, R.C.R.; Guterres, S.S.; Pohlmann, A.R. Polymeric nanocapsules: Concepts and applications. In Nanocosmetics and Nanomedicines; Beck, R., Guterres, S., Pohlmann, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hosseinkhani, B.; Callewaert, C.; Vanbeveren, N.; Boon, N. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnol. 2015, 32, 40–46. [Google Scholar] [CrossRef]
- Pentek, T.N.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules 2017, 22, 137. [Google Scholar] [CrossRef] [Green Version]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Sonneville-Aubrun, O.; Yukuyama, M.N.; Pizzino, A. Application of nanoemulsions in cosmetics. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 435–475. [Google Scholar]
- De Azevedo Ribeiro, R.C.; Gomes Barreto, S.M.A.; Ostrosky, E.A.; da Rocha-Filho, P.A.; Veríssimo, L.M.; Ferrari, M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musazzi, U.M.; Franzè, S.; Minghetti, P.; Casiraghi, A. Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product? Drug Deliv. Transl. Res. 2018, 88, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.G.; Sharma, N. Nanobiomaterials in cosmetics: Current status and future prospects. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 149–174. [Google Scholar]
- Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Morganti, P.; Morganti, G. Chitin nanofibrils for advanced cosmeceuticals. Clin. Dermatol. 2008, 26, 334–340. [Google Scholar] [CrossRef]
- SCCS. Opinion on Styrene/Acrylates Copolymer (Nano) and Sodium Styrene/Acrylates Copolymer (Nano). Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_218.pdf. (accessed on 14 April 2020).
- European Commission Asks for Scientific Advice on Safety of Nanomaterials Used in Cosmetics. Available online: https://euon.echa.europa.eu/view-article/-/journal_content/title/european-commission-asks-for-scientific-advice-on-safety-of-nanomaterials-used-in-cosmetics (accessed on 14 April 2020).
- Tak, Y.K.; Pal, S.; Naoghare, P.K.; Rangasamy, S.; Song, J.M. Shape-dependent skin penetration of silver nanoparticles: Does it really matter? Sci. Rep. 2015, 55, 16908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EC Nanomaterials. Available online: https://ec.europa.eu/growth/sectors/cosmetics/products/nanomaterials_en (accessed on 14 April 2020).
- Catalogue of Nanomaterials in Cosmetic Products Placed on the Market, version 2; ENDS Europe: Twickenham, UK, 2018.
- F.T.F.R. Nanotechnology Task Force Report. 2007. Available online: https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007 (accessed on 14 April 2020).
- ICCR. International Cooperation on Cosmetics Regulation. Available online: https://iccr-cosmetics.org/ (accessed on 14 April 2020).
- Ajazzuddin, M.; Jeswani, G.; Jha, A. Nanocosmetics: Past, present and future trends. Recent Pat. Nanomed. 2015, 5, 3–11. [Google Scholar] [CrossRef]
EC/List Name | EC | CAS | Type | Name |
---|---|---|---|---|
Carbon black | 215-609-9 | 1333-86-4 | Colorant | CI 77266/Carbon black |
Titanium dioxide | 236-675-5 | 13463-67-7 | Colorant/UV filter | CI 77891/TiO2 |
Zinc oxide | 215-222-5 | 1314-13-2 | Colorant/UV filter | CI 77947/ZnO |
2,2’-methylenebis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) | 403-800-1 | 103597-45-1 | UV filter | Methylene bis-benzotriazolyl tetramethylbutylphenol |
1,3,5-Triazine, 2,4,6-tris([1,1’-biphenyl]-4-yl) | 479-950-7 | 31274-51-8 | UV filter | Tris-biphenyl triazine |
Al2O3 | 215-691-6 | 1344-28-1 | Other functions | Alumina |
Cu | 231-159-6 | 7440-50-8 | Other functions | Colloidal copper |
Au | 231-165-9 | 7440-57-5 | Other functions | Colloidal gold |
Pt | 231-116-1 | 7440-06-4 | Other functions | Colloidal platinum |
Ag | 231-131-3 | 7440-22-4 | Other functions | Colloidal silver |
Cu | 231-159-6 | 7440-50-8 | Other functions | Copper |
(C60-Ih)[5,6]fullerene | 99685-96-8 | 99685-96-8 | Other functions | Fullerenes |
Fullerene C70 | 634-223-5 | 115383-22-7 | Other functions | Fullerenes |
Fullerene, multiwalled | 923-072-3 | N/A | Other functions | Fullerenes |
Fullerenes C60/C70 | 682-073-4 | 131159-39-2 | Other functions | Fullerenes |
Fullerenes C60/C70 | 943-307-3 | 131159-39-2 | Other functions | Fullerenes |
Au | 231-165-9 | 7440-57-5 | Other functions | Gold |
silicon dioxide; synthetic amorphous silicon dioxide (nano) | 231-545-4 | 7631-86-9 | Other functions | Hydrated silica |
Hydroxylapatite (Ca5(OH)(PO4)3) | 215-145-7 | 1306-06-5 | Other functions | Hydroxyapatite |
Pentacalcium hydroxide tris(orthophosphate) | 235-330-6 | 12167-74-7 | Other functions | Hydroxyapatite |
Silicic acid, lithium magnesium sodium salt | 258-476-2 | 53320-86-8 | Other functions | Lithium magnesium sodium silicate |
Platinum | 231-116-1 | 7440-06-4 | Other functions | Platinum |
silicon dioxide; synthetic amorphous silicon dioxide (nano) | 231-545-4 | 7631-86-9 | Other functions | Silica |
Amorphous silica | 614-122-2 | 67762-90-7 | Other functions | Silica dimethicone silylate |
Silane, dichlorodimethyl-, reaction products with silica | 271-893-4 | 68611-44-9 | Other functions | Silica dimethyl silylate |
Silanamine, 1,1,1-trimethyl-N-(trimethylsilyl)-, hydrolysis products with silica | 272-697-1 | 68909-20-6 | Other functions | Silica silylate |
Ag | 231-131-3 | 7440-22-4 | Other functions | Silver |
Silicate(2-), hexafluoro-, disodium, reaction products with lithium magnesium sodium silicate | 285-349-9 | 85085-18-3 | Other functions | Sodium magnesium fluorosilicate |
No entry in European Chemicals Agency chemicals database | N/A | N/A | Other functions | Sodium magnesium silicate |
No entry in ECHA’s chemicals database | N/A | N/A | Other functions | Sodium propoxyhydroxypropyl thiosulfate silica |
2-Propenoic acid, 2-methyl-, polymer with ethenylbenzene | 618-461-7 | 9010-92-8 | Other functions | Styrene/acrylates copolymer |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials 2020, 10, 979. https://doi.org/10.3390/nano10050979
Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials. 2020; 10(5):979. https://doi.org/10.3390/nano10050979
Chicago/Turabian StyleFytianos, Georgios, Abbas Rahdar, and George Z. Kyzas. 2020. "Nanomaterials in Cosmetics: Recent Updates" Nanomaterials 10, no. 5: 979. https://doi.org/10.3390/nano10050979