Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Scanning Electron Microscopy (SEM)
2.3. Dynamic Light Scattering (DLS)
2.3.1. Particles’ Size
2.3.2. Zeta Potentials
2.4. UV-Visible Spectroscopy
2.5. Fluorescence Spectroscopy
2.6. Circular Dichroism (CD) Studies
3. Results
3.1. Construction of the AP[5]A/STC[4]A Co-Assemblies
3.2. Co-Assembly with DNA
3.2.1. UV Spectroscopy
3.2.2. Fluorescence Spectroscopy
3.2.3. Circular Dichroism Spectroscopy
3.2.4. Dynamic Light Scattering
3.2.5. Scanning Electron Microscopy
3.3. Determination of the Proposed Structure of Co-Interpolyelectrolyte Aggregates AP[5]A/STC[4]A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.-L.; An, H.-W.; Peng, B.; Zheng, R.; Wang, H. Self-assembled nanomaterials: Design principles, the nanostructural effect, and their functional mechanisms as antimicrobial or detection agents. Mater. Hor. 2019, 6, 1794–1811. [Google Scholar] [CrossRef]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mat. 2019, 20, 51–95. [Google Scholar] [CrossRef] [Green Version]
- Sevim, S.; Sorrenti, A.; Franco, C.; Furukawa, S.; Pané, S.; deMello, A.J.; Puigmartí-Luis, J. Self-assembled materials and supramolecular chemistry within microfluidic environments: From common thermodynamic states to non-equilibrium structures. Chem. Soc. Rev. 2018, 47, 3788–3803. [Google Scholar] [CrossRef] [Green Version]
- Amit, M.; Yuran, S.; Gazit, E.; Reches, M.; Ashkenasy, N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. Adv. Mater. 2018, 30, 1707083. [Google Scholar] [CrossRef]
- Pergushov, D.V.; Müller, A.H.E.; Schacher, F.H. Micellar Interpolyelectrolyte Complexes. Chem. Soc. Rev. 2012, 41, 6888–6901. [Google Scholar] [CrossRef] [PubMed]
- van der Gucht, J.; Spruijt, E.; Lemmers, M.; Cohen Stuart, M.A. Polyelectrolyte Complexes: Bulk Phases and Colloidal Systems. J. Colloid Interface Sci. 2011, 361, 407–422. [Google Scholar] [CrossRef]
- Zhao, Q.; An, Q.F.; Ji, Y.; Qian, J.; Gao, C. Polyelectrolyte Complex Membranes for Pervaporation, Nanofiltration and Fuel Cell Applications. J. Membr. Sci. 2011, 379, 19–45. [Google Scholar] [CrossRef]
- Ahmadiannamini, P.; Li, X.; Goyens, W.; Joseph, N.; Meesschaert, B.; Vankelecom, I.F.J. Multilayered Polyelectrolyte Complex Based Solvent Resistant Nanofiltration Membranes Prepared from Weak Polyacids. J. Membr. Sci. 2012, 394−395, 98–106. [Google Scholar] [CrossRef]
- Delcea, M.; Möhwald, H.; Skirtach, A.G. Stimuli-Responsive LbL Capsules and Nanoshells for Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 730–747. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. Local and Systemic Delivery of VEGF siRNA Using Polyelectrolyte Complex Micelles for Effective Treatment of Cancer. J. Control. Release 2008, 129, 107–116. [Google Scholar] [CrossRef]
- Wang, Q.; Schlenoff, J.B. The Polyelectrolyte Complex/Coacervate Continuum. Macromolecules 2014, 47, 3108–3116. [Google Scholar] [CrossRef]
- Lounis, F.M.; Chamieh, J.; Gonzalez, P.; Cottet, H.; Leclercq, L. Prediction of Polyelectrolyte Complex Stoichiometry for Highly Hydrophilic Polyelectrolytes. Macromolecules 2016, 49, 3881–3888. [Google Scholar] [CrossRef]
- Fu, J.; Fares, H.M.; Schlenoff, J.B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules 2017, 50, 1066–1074. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Chen, M.; Diao, G.W.; Li, C.H.; Zhou, X.M. Phase transition of silver nanoparticles from aqueous solution to chloroform with the help of inclusion complexes of p-sulfonated calix[4]arene and alkanethiol molecules and its application in the size sorting of nanoparticles. Nanotechnology 2007, 18, 175706. [Google Scholar] [CrossRef]
- Chen, M.; Ding, W.H.; Kong, Y.; Diao, G.W. Conversion of the Surface Property of Oleic Acid Stabilized Silver Nanoparticles from Hydrophobic to Hydrophilic Based on Host−Guest Binding Interaction. Lanmuir 2008, 24, 3471–3478. [Google Scholar] [CrossRef]
- Baldini, L.; Sansone, F.; Massera, C.; Casnati, A.; Ugozzoli, F.; Ungaro, R. Designing nanoporous crystalline materials by self-assembly: 2D hydrogen-bonded networks from upper rim calix[4]arene diamide derivatives. Inorg. Chim. Acta 2007, 360, 970–980. [Google Scholar] [CrossRef]
- Seganish, J.L.; Santacroce, P.V.; Salimian, K.J.; Fettinger, J.C.; Zavalij, P.; Davis, J.T. Regulating supramolecular function in membranes: Calixarenes that enable or inhibit transmembrane Cl- transport. Angew. Chem. Int. Ed. 2006, 45, 3334–3338. [Google Scholar] [CrossRef]
- Schafer, C.; Eckel, R.; Ros, R.; Mattay, J.; Anselmetti, D. Photochemical Single-Molecule Affinity Switch. J. Am. Chem. Soc. 2007, 129, 1488–1489. [Google Scholar] [CrossRef]
- Organo, V.G.; Leontiev, A.V.; Sgarlata, V.; Dias, H.V.R.; Rudkevich, D.M. Supramolecular Features of Calixarene-Based Synthetic Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 3043–3047. [Google Scholar] [CrossRef]
- Atwood, J.L.; Steed, J.W. Encyclopedia of Supramolecular Chemistry; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–1744. [Google Scholar]
- Gorbatchuk, V.V.; Savelyeva, L.S.; Ziganshin, M.A.; Antipin, I.S.; Sidorov, V.A. Molecular recognition of organic guest vapor by solid adamantylcalix[4]arene. Russ. Chem. Bull. 2004, 53, 60–64. [Google Scholar] [CrossRef]
- Ziganshin, M.A.; Yakimova, L.S.; Khayarov, K.R.; Gorbatchuk, V.V.; Vysotsky, M.O.; Böhmer, V. Guest exchange in dimeric capsules of a tetraurea calix[4]arene in the solid state. Chem. Commun. 2006, 37, 3897–3899. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Ziganshin, M.A.; Sidorov, V.A.; Kovalev, V.V.; Shokova, E.A.; Tafeenko, V.A.; Gorbatchuk, V.V. Molecular Recognition of Organic Vapors by Adamantylcalix[4]arene in QCM Sensor Using Partial Binding Reversibility. J. Phys. Chem. B 2008, 112, 15569–15575. [Google Scholar] [CrossRef]
- Stoikov, I.I.; Mostovaya, O.A.; Yakimova, L.S.; Yantemirova, A.A.; Antipin, I.S.; Konovalov, A.I. Phosphorus-bridged calixarene phosphites: Dramatic influence of a tert-butyl group at the upper rim of the macrocycle upon anion binding. Mendeleev Commun. 2010, 20, 359–360. [Google Scholar] [CrossRef]
- Ogoshi, T.; Hasegawa, Y.; Aoki, T.; Ishimori, Y.; Inagi, S.; Yamagishi, T.-A. Reduction of Emeraldine Base Form of Polyaniline by Pillar[5]arene Based on Formation of Poly(pseudorotaxane) Structure. Macromolecules 2011, 44, 7639–7644. [Google Scholar] [CrossRef]
- Ogoshi, T.; Kitajima, K.; Aoki, T.; Yamagishi, T.A.; Nakamoto, Y. Effect of an Intramolecular Hydrogen Bond Belt and Complexation with the Guest on the Rotation Behavior of Phenolic Units in Pillar[5]arenes. J. Phys. Chem. Lett. 2010, 1, 817–821. [Google Scholar] [CrossRef]
- Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Org. Biomol. Chem. 2010, 8, 1568–1576. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Yakimova, L.S.; Rizvanov, I.K.; Plemenkov, V.V.; Stoikov, I.I. Water-soluble pillar[5]arenes: Synthesis and characterization of the inclusion complexes with p-toluenesulfonic acid. Macroheterocycles 2015, 8, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Jia, S.; Wang, W.; Yuan, Z.; Ravoo, B.J.; Guo, D.-S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem. 2019, 86, 86–93. [Google Scholar] [CrossRef]
- Chen, X.-M.; Chen, Y.; Yu, Q.; Gu, B.-H.; Liu, Y. Supramolecular assemblies with near-infrared emission mediated in two stages by cucurbituril and amphiphilic calixarene for lysosome- targeted cell imaging. Angew. Chem. Int. Ed. 2018, 57, 12519–12523. [Google Scholar] [CrossRef]
- Yakimova, L.; Padnya, P.; Tereshina, D.; Kunafina, A.; Nugmanova, A.; Osin, Y.; Evtugyn, V.; Stoikov, I. Interpolyelectrolyte mixed nanoparticles from anionic and cationic thiacalix[4]arenes for selective recognition of model biopolymers. J. Mol. Liq. 2019, 279, 9–17. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Gilmanova, L.H.; Evtugyn, V.G.; Osin, Y.N.; Stoikov, I.I. Self-assembled fractal hybrid dendrites from water-soluble anionic (Thia)calix[4] arenes and Ag+. J. Nanopart. Res. 2017, 19, 173–183. [Google Scholar] [CrossRef]
- Khan, G.S.; Shah, A.; Zia-ur-Rehman; Barker, D. Chemistry of DNA minor groove binding agents. J. Phtoch. Photobio. B 2012, 115, 105–118. [Google Scholar] [CrossRef]
- Kapuscinski, J.; Skoczylas, B. Fluorescent complexes of DNA with DAPI 4′-6-diamidine-2-phenyl indole 2HCl or DC14′-6-dicarboxyamide-2-phenyl indole. Nucleic Acids Res. 1978, 5, 3775–3799. [Google Scholar] [CrossRef] [Green Version]
- Biancardi, A.; Biver, T.; Secco, F.; Mennucci, B. An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Phys. Chem. Chem. Phys. 2013, 15, 4596–4603. [Google Scholar] [CrossRef]
- Kasyanenko, N.A.; Tikhomirov, R.A.; Bakulev, V.M.; Demidov, V.N.; Chikhirzhina, E.V.; Moroshkina, E.B. DNA Complexes with Cobalt(II) Phthalocyanine Disodium Disulfonate. ACS Omega 2019, 4, 16935–16942. [Google Scholar] [CrossRef] [Green Version]
- Zadmard, R.; Schrader, T. DNA recognition with large calixarene dimers. Angew. Chem. Int. Ed. 2006, 45, 2703–2706. [Google Scholar] [CrossRef]
- Pabbathi, A.; Samanta, A. Spectroscopic and Molecular Docking Study of the Interaction of DNA with a Morpholinium Ionic Liquid. J. Phys. Chem. B 2015, 119, 11099–11105. [Google Scholar] [CrossRef]
- Banerjee, D.; Pal, S.K. Dynamics in the DNA Recognition by DAPI: Exploration of the Various Binding Modes. J. Phys. Chem. B 2008, 112, 1016–1021. [Google Scholar] [CrossRef] [Green Version]
- Ankerfors, C.; Bertin, A.; Bouhallab, S.; Croguennec, T.; Müller, M.; Petzold, G.; Schwarz, S.; Wagberg, L. Polyelectrolyte Complexes in the Dispersed and Solid State II; Springer: Berlin, Germany, 2014; pp. 1–256. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Lohani, N.; Rajeswari, M.R. Preferential binding of anticancer drugs to triplex DNA compared to duplex DNA: A spectroscopic and calorimetric study. RSC Adv. 2016, 6, 39903–39917. [Google Scholar] [CrossRef]
- Shahabadi, N.; Mohammadi, S. Synthesis characterization and DNA interaction studies of a new Zn (II) complex containing different dinitrogen aromatic ligands. Bioinorg. Chem. Appl. 2012, 571913–571921. [Google Scholar] [CrossRef]
- Gomathi, R.; Ramu, A.; Murugan, A. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu (II), Co (II), and Ni (II) Schiff Base Complexes of 1-Phenylindoline-2, 3-dione with Isonicotinohydrazide. Bioinorg. Chem. Appl. 2014, 215392. [Google Scholar] [CrossRef]
- Norden, B.; Kurucsev, T. Analysing DNA complexes by circular and linear dichroism. J. Mol. Recognit. 1994, 7, 141–156. [Google Scholar] [CrossRef]
- Kaushik, M.; Kaushik, S.; Roy, K.; Singh, A.; Mahendru, S.; Kumar, M.; Chaudhary, S.; Ahmed, S.; Kukreti, S. A bouquet of DNA structures: Emerging diversity. Biochem. Biophys. Rep. 2016, 5, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Banavali, N.K.; Roux, B. Free Energy Landscape of A-DNA to B-DNA Conversion in Aqueous Solution. J. Am. Chem. Soc. 2005, 127, 6866–6876. [Google Scholar] [CrossRef]
- Gubendran, A.; Palsamy Kesavan, M.; Ayyanaar, S.; Mitu, L.; Athappan, P.; Rajesh, J. Non-enolisable Knoevenagel condensate appended Schiff bases-metal (II) complexes: Spectral characteristics, DNA-binding and nuclease activities. Spectrochim. Acta A 2017, 181, 39–46. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Puplampu, J.B.; Evtugin, G.A.; Stoikov, I.I. Polyfunctional branched nitrogen-containing p-tert-butylthiacalix[4]arene derivatives as efficient agents for packaging calf thymus DNA. Russ. Chem. Bull. 2017, 66, 1515–1523. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Astafieva, I.V.; Chikindas, M.L.; Rosenblat, G.F.; Kiselev, V.I.; Severin, E.S.; Kabanov, V.A. DNA interpolyelectrolyte complexes as a tool for efficient cell transformation. Biopolymers 1991, 31, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.V.; Kabanov, V.A. DNA Complexes with Polycations for the Delivery of Genetic Material into Cells. Bioconjugate Chem. 1995, 6, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Jiang, Y.; Zhang, W.; Karls, L.; Lodge, T.P.; Reineke, T.M. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. J. Am. Chem. Soc. 2019, 141, 15804–15817. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Reineke, T.M.; Lodge, T.P. Complexation of DNA with Cationic Copolymer Micelles: Effects of DNA Length and Topology. Macromolecules 2018, 51, 1150–1160. [Google Scholar] [CrossRef]
- Jiang, Y.; Lodge, T.P.; Reineke, T.M. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J. Am. Chem. Soc. 2018, 140, 11101–11111. [Google Scholar] [CrossRef]
- Stein, H.N. The Preparation of Dispersions in Liquids; CRC Press: Boca Raton, FL, USA, 1995; pp. 1–264. [Google Scholar]
Molar Ratio | [AP[5]A/STC[4]A]+CT-DNA | ||
---|---|---|---|
PDI | d, nm | ζ, mV | |
1:10 | 0.32 ± 0.04 | 199 ± 2 | −44 ± 3 |
1:7 | 0.30 ± 0.01 | 192 ± 2 | −41 ± 2 |
1:3 | 0.23 ± 0.01 | 186 ± 1 | −36 ± 1 |
c,* mol/L | STC[4]A [34] | AP[5]A | AP[5]A/STC[4]A | ||||
---|---|---|---|---|---|---|---|
PDI | d, nm | PDI | d, nm | PDI | d, nm | ζ, mV | |
3 × 10−4 | 0.41 ± 0.07 | 480 ± 73 | 0.40 ± 0.22 | 183 ± 12 | 0.18 ± 0.01 | 129 ± 5 | +37 ± 1 |
3 × 10−5 | 0.32 ± 0.02 | 168 ± 8 | 0.45 ± 0.19 | 167 ± 54 | 0.27 ± 0.02 | 124 ± 4 | +16 ± 1 |
3 × 10−6 | 0.38 ± 0.04 | 262 ± 25 | 0.35 ± 0.07 | 200 ± 38 | 0.40 ± 0.06 | 154 ± 19 | +10 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakimova, L.S.; Nugmanova, A.R.; Mostovaya, O.A.; Vavilova, A.A.; Shurpik, D.N.; Mukhametzyanov, T.A.; Stoikov, I.I. Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA. Nanomaterials 2020, 10, 777. https://doi.org/10.3390/nano10040777
Yakimova LS, Nugmanova AR, Mostovaya OA, Vavilova AA, Shurpik DN, Mukhametzyanov TA, Stoikov II. Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA. Nanomaterials. 2020; 10(4):777. https://doi.org/10.3390/nano10040777
Chicago/Turabian StyleYakimova, Luidmila S., Aigul R. Nugmanova, Olga A. Mostovaya, Alena A. Vavilova, Dmitriy N. Shurpik, Timur A. Mukhametzyanov, and Ivan I. Stoikov. 2020. "Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA" Nanomaterials 10, no. 4: 777. https://doi.org/10.3390/nano10040777