Fluorine-Doped Tin Oxide Colloidal Nanocrystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanocrystal Synthesis
2.3. Characterization Techniques
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 2017, 674, 1–52. [Google Scholar] [CrossRef]
- Kanehara, M.; Koike, H.; Yoshinaga, T.; Teranishi, T. Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region. J. Am. Chem. Soc. 2009, 131, 17736–17737. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Buonsanti, R.; Runnerstrom, E.L.; Mendelsberg, R.J.; Llordes, A.; Anders, A.; Richardson, T.J.; Milliron, D.J. Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals. Nano Lett. 2011, 11, 4415–4420. [Google Scholar] [CrossRef] [PubMed]
- Crockett, B.M.; Jansons, A.W.; Koskela, K.M.; Johnson, D.W.; Hutchison, J.E. Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals. ACS Nano 2017, 11, 7719–7728. [Google Scholar] [CrossRef]
- Lounis, S.D.; Runnerstrom, E.L.; Llordés, A.; Milliron, D.J. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 1564–1574. [Google Scholar] [CrossRef]
- Yin, P.; Tan, Y.; Fang, H.; Hegde, M.; Radovanovic, P.V. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat. Nanotechnol. 2018, 13, 463–467. [Google Scholar] [CrossRef]
- Zandi, O.; Agrawal, A.; Shearer, A.B.; Reimnitz, L.C.; Dahlman, C.J.; Staller, C.M.; Milliron, D.J. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710–717. [Google Scholar] [CrossRef]
- Tandon, B.; Yadav, A.; Khurana, D.; Reddy, P.; Santra, P.K.; Nag, A. Size-Induced Enhancement of Carrier Density, LSPR Quality Factor, and Carrier Mobility in Cr–Sn Doped In2O3 Nanocrystals. Chem. Mater. 2017, 29, 9360–9368. [Google Scholar] [CrossRef]
- Tandon, B.; Ghosh, S.; Milliron, D.J. Dopant Selection Strategy for High-Quality Factor Localized Surface Plasmon Resonance from Doped Metal Oxide Nanocrystals. Chem. Mater. 2019, 31, 7752–7760. [Google Scholar] [CrossRef]
- Buonsanti, R.; Llordes, A.; Aloni, S.; Helms, B.A.; Milliron, D.J. Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals. Nano Lett. 2011, 11, 4706–4710. [Google Scholar] [CrossRef] [PubMed]
- Della Gaspera, E.; Chesman, A.S.R.; Van Embden, J.; Jasieniak, J.J. Non-injection Synthesis of Doped Zinc Oxide Plasmonic Nanocrystals. ACS Nano 2014, 8, 9154–9163. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Saha, M.; De, S.K. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale 2014, 6, 7039–7051. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ren, Y.; Bai, S.; Zhang, N.; Dai, X.; Wang, X.; He, H.; Jin, C.; Ye, Z.; Chen, Q.; et al. Colloidal Indium-Doped Zinc Oxide Nanocrystals with Tunable Work Function: Rational Synthesis and Optoelectronic Applications. Chem. Mater. 2014, 26, 5169–5178. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, P.; Roy, C.R.; Barnes, M.D.; Kittilstved, K.R. Direct Evidence of Surface Charges in n-Type Al-Doped ZnO. J. Phys. Chem. C 2018, 122, 18596–18602. [Google Scholar] [CrossRef]
- Wainer, P.; Kendall, O.; Lamb, A.; Barrow, S.J.; Tricoli, A.; Gómez, D.E.; Van Embden, J.; Della Gaspera, E. Continuous Growth Synthesis of Zinc Oxide Nanocrystals with Tunable Size and Doping. Chem. Mater. 2019, 31, 9604–9613. [Google Scholar] [CrossRef]
- Manthiram, K.; Alivisatos, A.P. Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998. [Google Scholar] [CrossRef]
- Diroll, B.T.; Gordon, T.R.; Gaulding, E.A.; Klein, D.R.; Paik, T.; Yun, H.J.; Goodwin, E.D.; Damodhar, D.; Kagan, C.R.; Murray, C.B. Synthesis of N-Type Plasmonic Oxide Nanocrystals and the Optical and Electrical Characterization of their Transparent Conducting Films. Chem. Mater. 2014, 26, 4579–4588. [Google Scholar] [CrossRef]
- Shepherd, W.; Wilms, M.; Van Embden, J.; Della Gaspera, E. Accurate control of stoichiometry and doping in barium stannate perovskite oxide nanoparticles. Chem. Commun. 2019, 55, 11880–11883. [Google Scholar] [CrossRef]
- Urso, C.; Barawi, M.; Gaspari, R.; Sirigu, G.; Kriegel, I.; Zavelani-Rossi, M.; Scotognella, F.; Manca, M.; Prato, M.; De Trizio, L.; et al. Colloidal Synthesis of Bipolar Off-Stoichiometric Gallium Iron Oxide Spinel-Type Nanocrystals with Near-IR Plasmon Resonance. J. Am. Chem. Soc. 2017, 139, 1198–1206. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.; Zhang, T.; Lee, J.Y. Fluoride-Assisted Synthesis of Plasmonic Colloidal Ta-Doped TiO2 Nanocrystals for Near-Infrared and Visible-Light Selective Electrochromic Modulation. Chem. Mater. 2018, 30, 4838–4846. [Google Scholar] [CrossRef]
- Nütz, T.; Felde, U.Z.; Haase, M. Wet-chemical synthesis of doped nanoparticles: Blue-colored colloids of n-doped SnO2:Sb. J. Chem. Phys. 1999, 110, 12142–12150. [Google Scholar] [CrossRef]
- Nütz, T.; Haase, M. Wet-Chemical Synthesis of Doped Nanoparticles: Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2. J. Phys. Chem. B 2000, 104, 8430–8437. [Google Scholar] [CrossRef]
- Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathousky, J.; Niederberger, M.; Fattakhova-Rohlfing, D. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure. Chem. Mater. 2009, 21, 5229–5236. [Google Scholar] [CrossRef]
- Luo, L.; Bozyigit, D.; Wood, V.; Niederberger, M. High-Quality Transparent Electrodes Spin-Cast from Preformed Antimony-Doped Tin Oxide Nanocrystals for Thin Film Optoelectronics. Chem. Mater. 2013, 25, 4901–4907. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, S.; Shi, L.; Zhao, Y.; Fang, J. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J. Colloid Interface Sci. 2010, 346, 12–16. [Google Scholar] [CrossRef]
- Avadhut, Y.S.; Weber, J.; Hammarberg, E.; Feldmann, C.; Schellenberg, I.; Pöttgen, R.; Schmedt auf der Günne, J. Study on the Defect Structure of SnO2:F Nanoparticles by High-Resolution Solid-State NMR. Chem. Mater. 2011, 23, 1526–1538. [Google Scholar] [CrossRef]
- Pramata, A.D.; Suematsu, K.; Quitain, A.T.; Sasaki, M.; Kida, T. Synthesis of Highly Luminescent SnO2 Nanocrystals: Analysis of their Defect-Related Photoluminescence Using Polyoxometalates as Quenchers. Adv. Funct. Mater. 2018, 28, 1704620. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Duffy, N.W.; van Embden, J.; Waddington, L.; Bourgeois, L.; Jasieniak, J.J.; Chesman, A.S.R. Plasmonic Ge-doped ZnO nanocrystals. Chem. Commun. 2015, 51, 12369–12372. [Google Scholar] [CrossRef]
- Perebeinos, V.; Chan, S.-W.; Zhang, F. ‘Madelung model’ prediction for dependence of lattice parameter on nanocrystal size. Solid State Commun. 2002, 123, 295–297. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Ghodsi, V.; Radovanovic, P.V. Turning Weakly Luminescent SnO2 Nanocrystals into Tunable and Efficient Light Emitters by Aliovalent Alloying. Chem. Mater. 2018, 30, 3578–3587. [Google Scholar] [CrossRef]
- Kar, A.; Kundu, S.; Patra, A. Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles. J. Phys. Chem. C 2011, 115, 118–124. [Google Scholar] [CrossRef]
- Moloney, M.P.; Gun’ko, Y.K.; Kelly, J.M. Chiral highly luminescent CdS quantum dots. Chem. Commun. 2007, 38, 3900–3902. [Google Scholar] [CrossRef] [PubMed]
- Morfa, A.J.; Beane, G.; Mashford, B.; Singh, B.; Della Gaspera, E.; Martucci, A.; Mulvaney, P. Fabrication of ZnO Thin Films from Nanocrystal Inks. J. Phys. Chem. C 2010, 114, 19815–19821. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Griggs, J.; Ahmed, T.; Walia, S.; Mayes, E.L.H.; Calzolari, A.; Catellani, A.; van Embden, J. Augmented band gap tunability in indium-doped zinc sulfide nanocrystals. Nanoscale 2019, 11, 3154–3163. [Google Scholar] [CrossRef]
- Pi, X.D.; Gresback, R.; Liptak, R.W.; Campbell, S.A.; Kortshagen, U. Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl. Phys. Lett. 2008, 92, 123102. [Google Scholar] [CrossRef]
- Faucheaux, J.A.; Jain, P.K. Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics. J. Phys. Chem. Lett. 2013, 4, 3024–3030. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendall, O.; Wainer, P.; Barrow, S.; van Embden, J.; Della Gaspera, E. Fluorine-Doped Tin Oxide Colloidal Nanocrystals. Nanomaterials 2020, 10, 863. https://doi.org/10.3390/nano10050863
Kendall O, Wainer P, Barrow S, van Embden J, Della Gaspera E. Fluorine-Doped Tin Oxide Colloidal Nanocrystals. Nanomaterials. 2020; 10(5):863. https://doi.org/10.3390/nano10050863
Chicago/Turabian StyleKendall, Owen, Pierce Wainer, Steven Barrow, Joel van Embden, and Enrico Della Gaspera. 2020. "Fluorine-Doped Tin Oxide Colloidal Nanocrystals" Nanomaterials 10, no. 5: 863. https://doi.org/10.3390/nano10050863
APA StyleKendall, O., Wainer, P., Barrow, S., van Embden, J., & Della Gaspera, E. (2020). Fluorine-Doped Tin Oxide Colloidal Nanocrystals. Nanomaterials, 10(5), 863. https://doi.org/10.3390/nano10050863