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Abstract: Fluorine-doped tin oxide (FTO) is one of the most studied and established materials for
transparent electrode applications. However, the syntheses for FTO nanocrystals are currently very
limited, especially for stable and well-dispersed colloids. Here, we present the synthesis and detailed
characterization of FTO nanocrystals using a colloidal heat-up reaction. High-quality SnO2 quantum dots
are synthesized with a tuneable fluorine amount up to ~10% atomic, and their structural, morphological
and optical properties are fully characterized. These colloids show composition-dependent optical
properties, including the rise of a dopant-induced surface plasmon resonance in the near infrared.
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1. Introduction

Plasmonic semiconducting nanocrystals (NCs), and specifically doped metal oxides have recently
emerged as materials able to bridge the optoelectronic gap between metal and dielectric NCs, providing
optical transparency in the visible spectral range and tuneable localized surface plasmon resonance
(LSPR) peaks in the infrared [1,2]. Coatings deposited from such NCs typically show significantly
enhanced conductivity compared to assemblies of their undoped counterparts. This tuneability in
optical and electrical properties is related to the amount of free carriers induced by aliovalent doping,
which can be modulated during NC synthesis through appropriate reaction conditions.

Thus far, the majority of research on plasmonic oxide NCs has focussed on indium tin oxide
(ITO), due to the robust and reproducible protocols available for the synthesis of In2O3, and to its
amenability to doping with tin [3–8]. Additionally, doped indium oxide NCs can show rather sharp
plasmonic peaks at high energies, leading to NCs with high quality factor LSPR [9,10]. Research on
materials alternative to ITO has seen constant increase. Doped ZnO has been extensively investigated
as a cheaper, earth-abundant option, with synthetic protocols now available to synthesize ZnO NCs
with a range of dopant types and LSPR energies [11–16]. Additional research has also been conducted
on other plasmonic oxides including TiO2, WO3, BaSnO3, CdO, Ga2FeO4, highlighting the breadth and
potential of this research field [17–21].

Considering that ITO is one of the two industry standards for transparent conducting oxide (TCO)
coatings, it is not surprising that the majority of the work is done on ITO NCs. However, fluorine-doped
tin oxide (FTO) is the market competitor for TCO applications, and yet surprisingly very little is
available in the literature for SnO2-based NCs, especially with plasmonic properties. In fact, excluding
a few early works on antimony-doped SnO2 (that show a distinctive blue color and IR absorption
properties [22,23]), little work has been done on the synthesis of colloidal SnO2 NCs, and specifically on
aliovalently doped SnO2 showing plasmonic properties. The few existing works include solvothermal
or microwave-based reactions, which are mostly focused on antimony doping [24,25], and also some
reports on FTO NCs [26,27]. However, these methods for FTO NCs usually produce powders and/or
suspensions of aggregated NCs, which are not ideal for optical and optoelectronic applications.
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Here, we present the colloidal synthesis of FTO NCs in the 2–4 nm size range, and analyze their
properties in relation to the amount of fluorine dopant. We demonstrate that fluorine quenches the
defect-related blue luminescence typical of SnO2, and also that the aliovalent doping imparts plasmonic
resonances in the near infrared, which are a clear indication of the generation of free carriers.

2. Materials and Methods

2.1. Materials

Tin bis-acetylacetonate dichloride (98%), ammonium fluoride (99.99%), diphenyl ether (99%),
1,2-dodecanediol (90%) and oleylamine (70%) were purchased from Sigma Aldrich (Castle Hill, NSW,
Australia). Methanol (99.8%), ethanol (99.9%), toluene (99.5%) and chloroform (99.8%) were supplied
by Thermo Fisher Scientific/Univar (Scoresby, VIC, Australia). All chemicals were used without
further purification.

2.2. Nanocrystal Synthesis

In a typical synthesis, 7.5 mL diphenyl ether, 0.8 mL oleylamine, 1 mmol 1,2-dodecanediol and
1 mmol of the tin precursor (or tin + dopant precursors) are loaded into a 50 mL three neck round
bottom flask (RBF). The RBF was connected to a Schlenk line and placed under vacuum (~4× 10−3 mbar)
at 60 ◦C with the aid of a heating mantle until the precursors were fully dissolved and completely
degassed (~15 min). The RBF was then backfilled with nitrogen and then heated to 240 ◦C within
~30 min, with the reaction being held at this temperature for 3 h. At the end of the reaction, the heating
mantle was switched off, and the NC suspension was let cool naturally under a nitrogen blanket. Excess
ethanol (~30 mL) is added to flocculate the NCs, which are then centrifuged (4400 rpm, 6 min) and
resuspended in toluene. In some instances, methanol (5–10 mL in addition to ethanol) was required to
induce precipitation of the NCs. This process is repeated 2–3 times to further purify the NCs. After
the last washing, the precipitate is split, with half of the product being re-suspended and stocked in
chloroform and the other half being collected and dried at 80 ◦C overnight obtaining a fine powder.
Selected powder samples were annealed at 600 ◦C for 2 h in a muffle furnace. To produce more
material, this protocol can be easily scaled up doubling the amount of reagents, and keeping all the
other reaction parameters constant. The samples have been labeled SnO2 (for undoped NCs) or FTOX,
where X is the doping level defined as:

X(%) = nF/(nSn + nF) × 100 (1)

where n is the number of moles. This notation is conventionally used for doping at the cation site, with
the dopant replacing the metal ion (tin) within the oxide lattice. Here, fluorine act as a dopant at the
anion site, replacing oxygen. However, for consistency with existing literature, we decided to keep this
notation to define the doping level.

2.3. Characterization Techniques

X-ray diffraction (XRD) patterns of powder samples were collected using a Bruker D4 Endeavor
diffractometer (Bruker, Billerica, MA, USA) equipped with a Cu-Kα radiation source and operated
at 40 kV and 35 mA. The crystallite size was evaluated with the Scherrer relationship using the
full width at half-maximum of the main diffraction peaks fitted using Lorentzian functions. Energy
dispersive X-ray (EDX) spectra were acquired on a Nova 200 NanoSEM (FEI, Hillsboro, OR, USA) with
a voltage of 20 kV. The fluorine doping level for each sample was averaged on at least five independent
measurements. Transmission electron microscopy (TEM) images were acquired on a JEOL 2100F
microscope (JEOL, Tokyo, Japan) operated at 200 kV. Optical absorption spectra in the UV and visible
regions of NCs dispersed in chloroform were acquired with a Cary 60 UV-Vis spectrophotometer
(Agilent, Santa Clara, CA, USA). Photoluminescence (PL) spectra of the same solutions were acquired
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with a Horiba Jobin Yvon Fluoromax-4 fluorometer (Horiba, Kyoto, Japan) with excitation wavelengths
of 260 and 330 nm. Optical absorption spectra in the visible and NIR regions were acquired with a Cary
7000 UV-Vis-NIR spectrophotometer (Agilent, Santa Clara, CA, USA) equipped with an integrating
sphere and a centermount sample holder. Fourier transform infrared (FTIR) spectroscopy was carried
out using a Perkin-Elmer Frontier spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with a
Pike GladiATR attenuated total reflectance (ATR) stage.

3. Results and Discussion

FTO NCs are synthesized adapting an existing protocol developed for SnO2 NCs [28]. Briefly,
tin (IV) bis-acetylacetonate dichloride and the desired amount of ammonium fluoride (0%, 5%, 10%
or 20% nominal) are dissolved in a mixture of diphenyl ether, oleylamine and 1,2-dodecanediol.
After degassing at 60 ◦C, the mixture is heated to 240 ◦C under a nitrogen atmosphere and held at that
temperature for 3 h. The reaction proceeds via alcoholysis between the diol and acetylacetonate groups,
generating water in-situ. This triggers the formation of SnO2 clusters via condensation of hydroxylated
tin precursors in the presence of oleylamine as surface ligand [29]. After the completion of the reaction,
the solution is cooled to room temperature and the NCs are collected and purified by means of
conventional centrifugation/resuspension cycles.

Figure 1 shows the X-ray diffraction (XRD) patterns for undoped SnO2 NCs, and for FTO NCs
with different nominal doping levels (5, 10 and 20 atomic% with respect to Sn, hereafter labelled FTO5,
FTO10 and FTO20, respectively). Broad diffraction peaks can be seen in all samples, indicative of
nanometer-size crystals. All peaks can be indexed to tetragonal cassiterite SnO2 (Figure 1b, ICDD No.
41-1445) without the presence of impurities. The diffraction peaks do not seem to shift with increased
doping level, suggesting minimal perturbation in the crystalline lattice caused by the presence of
fluoride anions. However, the broad peaks make the identification of shifts quite challenging, especially
because nano-sized crystals can show deviation from the expected lattice parameter values even
without the presence of extrinsic dopants [30]. Scherrer analysis was carried out to estimate the
crystallite size from the full width at half maximum (FWHM) of the three main diffraction peaks:
(110) at 26.6◦, (101) at 33.9◦ and (211) at 51.8◦. The average size of the crystals is seen to increase
slightly (from ~1.8 nm to ~2.7 nm) when larger amounts of ammonium fluoride are added to the
reaction medium. Notably, the error (standard deviation) associated with these estimates is rather
large, and therefore the size increase is almost statistically insignificant (Figure 1c). Although minor,
this effect might point out to a role of ammonium fluoride in controlling the nucleation and growth of
SnO2 NCs. Interestingly, if the dried NCs are annealed at high temperature (600 ◦C), the expected
thermally-induced grain growth is less pronounced in highly doped FTO compared to both undoped
SnO2 and FTO samples with lower dopant concentrations. This evidence shows that once inside the
SnO2 lattice, fluorine dopants act as defects resulting in enough lattice strain to hinder the overall grain
growth of the NCs (see Figure S1 in the Supplementary).

Compositional analysis on the NC powders was carried out using energy dispersive X-ray (EDX)
spectroscopy; despite fluorine being a light element, its presence could be clearly detected in the doped
samples (see Figure S2 for EDX spectra), with its signal progressively increasing in samples with
a higher nominal doping (Figure 1d). By comparing the experimentally observed fluorine amount with
the nominal fluorine doping level (amount of ammonium fluoride used in the reaction) we can evaluate
the average “doping efficiency” of our system. We achieved almost stoichiometric incorporation of
fluorine at 5% nominal doping (experimental value: 5.2 ± 1.7%), and reasonably high doping levels
for higher fluorine concentrations (7.8 ± 1.0% for FTO10 and 12.1 ± 1.2% for FTO20). These values
correspond to average doping efficiencies of 100% for FTO5, 78% for FTO10 and 60% for FTO20.
The doping efficiency is high at low doping levels, and progressively decreases at high doping levels
(Figure 1d). This is due to the stresses (both physical and Coulombic) induced by the aliovalent
dopants, which provide a barrier to the continual incorporation of additional dopant ions [11,12].
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Figure 1. (a) X-ray diffraction (XRD) patterns for the undoped SnO2 and F-doped SnO2 (FTO) 
nanocrystals (NCs) prepared in this study. The expected diffraction peak positions for cassiterite tin 
dioxide are reported at the bottom. (b) Schematic representation of the SnO2 lattice. (c) Crystallite size 
as a function of the doping level. (d) Experimental F doping and average doping efficiency as a 
function of the nominal doping level. 
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variation in lattice spacing in doped samples can be observed, which is not surprising considering 
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Figure 1. (a) X-ray diffraction (XRD) patterns for the undoped SnO2 and F-doped SnO2 (FTO)
nanocrystals (NCs) prepared in this study. The expected diffraction peak positions for cassiterite tin
dioxide are reported at the bottom. (b) Schematic representation of the SnO2 lattice. (c) Crystallite
size as a function of the doping level. (d) Experimental F doping and average doping efficiency as a
function of the nominal doping level.

Having analyzed the structural and compositional properties of our FTO NCs, we now focus
on the size and the morphology of the colloids. Transmission electron microscopy (TEM) results are
reported in Figure 2 and Figure S3. Small NCs, with size ranging between 2 and 4 nm can be readily
seen in all samples. These values are in reasonable agreement with the crystallite size evaluated
from the diffraction patterns. The NCs are slightly polydisperse and irregular in size, however, they
are highly crystalline as evidenced by the high-resolution images showing distinctive lattice fringes.
The respective fast Fourier transform (FFT) data show clear spots in reciprocal space that can be readily
indexed to cassiterite SnO2, with predominant (110) and (101) lattice planes visible. No discernible
variation in lattice spacing in doped samples can be observed, which is not surprising considering the
extremely small size of the NCs.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 9 

 

 
Figure 2. High resolution transmission electron microscopy (TEM) images of doped and undoped 
SnO2 NCs. For each sample, two images of individual NCs and the respective fast Fourier transform 
(FFT) images are presented. The scale bars are 2 nm for the TEM images and 2 × 1/nm for the FFT 
images. 

The FTO NCs are synthesized in high-boiling point solvents in the presence of aliphatic ligands 
(oleylamine). Such ligands are still present at the surface of the NCs after purification (as 
demonstrated by FTIR spectroscopy, see Figure S4) and make them readily soluble in non-polar 
solvents without aggregation. This enables precise optical measurements to be conducted to elucidate 
the optical band gap and the emission properties. The optical characterization of the FTO colloids 
dispersed in chloroform is reported in Figure 3. All NCs show a sharp absorption onset at ~275 nm, 
corresponding to a band gap energy of ~4.5 eV (Figure 3a and Figure S5 for Tauc analysis). This value 
is larger than the band gap of bulk SnO2 (3.6 eV [31]), and can be readily ascribed to quantum 
confinement given the small size of the NCs [28,32]. Interestingly, clear excitonic transitions can be 
observed in the spectra, indicating the high quality and the high crystallinity of the as-prepared NCs. 
In addition, an absorption tail extending from the band edge towards longer wavelengths can be 
seen, suggesting the presence of low-energy defect states located within the band gap. 

Photoluminescence (PL) spectra have been acquired to investigate the emission properties of the 
FTO NCs. Using an excitation wavelength of 260 nm (4.77 eV, higher energy than band gap), two 
emission peaks can be identified in all samples. The higher energy emission peak at ~285 nm is 
associated with band-edge recombination. The lower energy peak is centered in the blue spectral 
region and is much broader than the high energy one. This peak is due to defect-related emission, 
including defects such as oxygen vacancies, tin interstitials and partially reduced tin (Sn2+ at Sn4+ 
sites), which create additional levels within the SnO2 band gap [28,32,33]. This phenomenon is also 
commonly observed in other un-passivated quantum dots such as ZnO, ZnS and CdS [34–36]. 
Interestingly, the presence of fluorine dopants drastically decreases the intensity of this defect band, 
as shown in the inset of Figure 3b, where the areal (integrated) ratio between the excitonic peak and 
the defect peak is plotted as a function of fluorine doping. This ratio increases almost three-fold from 
~0.18 for the undoped sample to ~0.49 for the FTO20 sample, showing the inverse relationship 
between the two peaks with the addition of fluorine. It is important to note that, while dopants can 
act as defects and cause an increase in defect-related emissions, they can also act as luminescence 
quenchers through non-radiative mechanisms, which is assumed to be the case of fluorine within 
SnO2 [36,37]. 

Figure 2. High resolution transmission electron microscopy (TEM) images of doped and undoped SnO2

NCs. For each sample, two images of individual NCs and the respective fast Fourier transform (FFT)
images are presented. The scale bars are 2 nm for the TEM images and 2 × 1/nm for the FFT images.
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The FTO NCs are synthesized in high-boiling point solvents in the presence of aliphatic ligands
(oleylamine). Such ligands are still present at the surface of the NCs after purification (as demonstrated
by FTIR spectroscopy, see Figure S4) and make them readily soluble in non-polar solvents without
aggregation. This enables precise optical measurements to be conducted to elucidate the optical
band gap and the emission properties. The optical characterization of the FTO colloids dispersed in
chloroform is reported in Figure 3. All NCs show a sharp absorption onset at ~275 nm, corresponding
to a band gap energy of ~4.5 eV (Figure 3a and Figure S5 for Tauc analysis). This value is larger than
the band gap of bulk SnO2 (3.6 eV [31]), and can be readily ascribed to quantum confinement given the
small size of the NCs [28,32]. Interestingly, clear excitonic transitions can be observed in the spectra,
indicating the high quality and the high crystallinity of the as-prepared NCs. In addition, an absorption
tail extending from the band edge towards longer wavelengths can be seen, suggesting the presence of
low-energy defect states located within the band gap.

Photoluminescence (PL) spectra have been acquired to investigate the emission properties of
the FTO NCs. Using an excitation wavelength of 260 nm (4.77 eV, higher energy than band gap),
two emission peaks can be identified in all samples. The higher energy emission peak at ~285 nm is
associated with band-edge recombination. The lower energy peak is centered in the blue spectral region
and is much broader than the high energy one. This peak is due to defect-related emission, including
defects such as oxygen vacancies, tin interstitials and partially reduced tin (Sn2+ at Sn4+ sites), which
create additional levels within the SnO2 band gap [28,32,33]. This phenomenon is also commonly
observed in other un-passivated quantum dots such as ZnO, ZnS and CdS [34–36]. Interestingly,
the presence of fluorine dopants drastically decreases the intensity of this defect band, as shown in the
inset of Figure 3b, where the areal (integrated) ratio between the excitonic peak and the defect peak
is plotted as a function of fluorine doping. This ratio increases almost three-fold from ~0.18 for the
undoped sample to ~0.49 for the FTO20 sample, showing the inverse relationship between the two
peaks with the addition of fluorine. It is important to note that, while dopants can act as defects and
cause an increase in defect-related emissions, they can also act as luminescence quenchers through
non-radiative mechanisms, which is assumed to be the case of fluorine within SnO2 [36,37].Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 9 
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Figure 3. Optical characterization of SnO2 and FTO NCs. (a) Optical absorption spectra in the UV-Vis
region. The spectra are vertically offset for clarity. (b) Photoluminescence spectra with excitation
at 260 nm. The inset shows the integrated ratio between the excitonic peak and the defect peak.
(c) Photoluminescence spectra with excitation at 330 nm. The inset shows a digital photograph of SnO2

(left) and FTO10 (right) colloids under UV illumination. (d) Absorption spectra in the UV-Vis-NIR
showing a plasmon peak of increasing intensity.
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Notably, our FTO NCs can also be excited below the band gap, as shown in Figure 3c; following
excitation at 330 nm (3.75 eV), all samples are seen to emit in the blue spectral region, again with the
undoped SnO2 NCs being much brighter than the FTO NCs. This is evident in the inset of Figure 3c,
which shows a digital picture of two colloidal solutions (SnO2, left; FTO10, right) exposed to UV
illumination in ambient light. Additional photos of the two solutions under different light conditions
can be found in Figure S6. The ability to excite directly sub-band gap states in SnO2 colloids has been
previously demonstrated for undoped SnO2, and relies on the presence of the aforementioned defect
states [28].

One of the main features that is commonly observed in TCO NCs is the presence of a LSPR peak in
the near-mid infrared region following aliovalent doping. Our FTO NCs show a steady increase in the
intensity of the plasmon peak in the IR with increased doping, while the undoped NCs are transparent
across most of the visible and NIR spectral range (Figure 3d). This LSPR peak is a further evidence
of the successful fluorine incorporation within SnO2, and the subsequent generation of additional
charge carriers. Interestingly, the presence of a LSPR peak in such small NCs (2–4 nm), suggests
that this resonance can be generated and sustained by just a few conduction band electrons per NC,
as previously shown also for photodoped ZnO quantum dots [38]. Moreover, the absorption tail
extending from the band gap into the visible range is observed again in all samples, which is consistent
with the presence of in-gap states.

Importantly, our optimized synthetic method is applicable to the synthesis of antimony-doped tin
oxide (ATO), by simply replacing the fluorine precursor with antimony chloride. ATO NCs of similar
size (2–3 nm from Scherrer analysis) are obtained, and their NIR absorption properties confirm the
presence of a LSPR, indicative of free carriers generated by the aliovalent dopant, in this instance at the
cation site (Figure S7). These preliminary results demonstrate the applicability of this reaction to other
doped SnO2 NCs, highlighting its potential.

4. Conclusions

In conclusion, we have presented a method to synthesize colloidal SnO2 NCs doped with fluorine,
and investigated their structural, morphological and optical properties. Fluorine dopants can be
incorporated within SnO2 in high concentration without detrimental effects on the host crystal.
Their presence is further validated by the generation of a surface plasmon resonance in the near
infrared associated with the increased number of free carriers. This work will stimulate and foster
future studies on SnO2-based colloidal NCs for optoelectronic and plasmonic applications.
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Figure S5: Tauc plots. Figure S6: Digital photo of colloidal solutions. Figure S7: Characterization of Sb-doped
SnO2 nanocrystals.
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