Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors
Abstract
:1. Introduction
2. Heterojunction Oxide TFTs
2.1. Vacuum-Processed Heterojunction Oxide TFTs
2.2. Solution-Processed Heterojunction Oxide TFTs
2.2.1. Electrical-Property Modulation
2.2.2. Mobility Enhancement by Forming 2D Electron Gas
3. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Kim, S.; Kim, S.; Kim, C.; Song, I.; Park, Y.; Jung, U.I.; Kim, D.H.; Lee, J.S. Highly stable transparent amorphous oxide semiconductor thin-film transistors having double-stacked active layers. Adv. Mater. 2010, 22, 5512–5516. [Google Scholar] [CrossRef] [PubMed]
- Pasquarelli, R.M.; Ginley, D.S.; Ryan, O.H. Solution processing of transparent conductors: From flask to film. Chem. Soc. Rev. 2015, 43, 5406–5441. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, H.; Xu, J.-B.; Wang, L. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2018, 10, 25878–25901. [Google Scholar] [CrossRef]
- Chong, E.; Jeon, Y.W.; Chun, Y.S.; Kim, D.H.; Lee, S.Y. Localization effect of a current-path in amorphous In–Ga–Zn–O thin film transistors with a highly doped buried-layer. Thin Solid Film. 2011, 519, 4347–4350. [Google Scholar] [CrossRef]
- Wakana, H.; Kawamura, T.; Fujii, K.; Uchiyama, H.; Hatano, M. P-17: Amorphous ZTO/ITO Stacked-Channel TFTs with Field Effect Mobility over 50 cm2/Vs and Resistant to Channel Thickness Dispersion. Sid Symp. Dig. Tech. Pap. 2010, 41, 1287–1290. [Google Scholar] [CrossRef]
- Liu, G.; Ao, L.; Zhu, H.; Shin, B.; Shan, F. Low-Temperature, Nontoxic Water-Induced Metal-Oxide Thin Films and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2015, 25, 2564–2572. [Google Scholar] [CrossRef]
- Han, S.Y.; Herman, G.S.; Chang, C.H. Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors. J. Am. Chem. Soc. 2011, 133, 5166. [Google Scholar] [CrossRef]
- Marrs, M.A.; Moyer, C.D.; Bawolek, E.J.; Cordova, R.J.; Trujillo, J.; Raupp, G.B.; Vogt, B.D. Control of Threshold Voltage and Saturation Mobility Using Dual-Active-Layer Device Based on Amorphous Mixed Metal–Oxide–Semiconductor on Flexible Plastic Substrates. IEEE Trans. Electron Devices 2011, 58, 3428–3434. [Google Scholar] [CrossRef]
- Jeon, S.; Sun, I.K.; Park, S.; Song, I.; Kim, C. Low-Frequency Noise Performance of a Bilayer InZnO–InGaZnO Thin-Film Transistor for Analog Device Applications. IEEE Electron Device Lett. 2010, 31, 1128–1130. [Google Scholar] [CrossRef]
- Yang, J.H.; Choi, J.H.; Pi, J.E.; Kim, H.O.; Park, E.S.; Kwon, O.S.; Nam, S.; Cho, S.H.; Yoo, S.; Hwang, C.S. High Performance Back Channel Etch Metal Oxide Thin-film Transistor with Double Active Layers. Sid Int. Symp. Dig. Technol. Pap. 2016, 47, 1151–1154. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, J.S.; Jeong, H.K.; Son, K.S.; Kim, T.S.; Seon, J.B.; Lee, E.; Chung, J.G.; Kim, D.H.; Ryu, M.; et al. Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. ACS Appl. Mater. Interfaces 2012, 4, 5416–5421. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Heo, J.S.; Kim, T.H.; Park, S.; Yoon, M.H.; Kim, J.; Oh, M.S.; Yi, G.R.; Noh, Y.Y.; Park, S.K. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 2012, 489, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, D.; Xu, W.; Han, S.; Fang, M.; Liu, W.; Cao, P.; Lu, Y. High-mobility nanometer-thick crystalline In–Sm–O thin-film transistors via aqueous solution processing. J. Mater. Chem. C 2020, 8, 310–318. [Google Scholar] [CrossRef]
- Jeong, S.; Ha, Y.G.; Moon, J.; Facchetti, A.; Marks, T.J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 2010, 22, 1346. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Wang, Y.; Shao, S.; Luo, M.; Pecunia, V.; Shao, L.; Zhao, J.; Chen, Z.; Mo, L.; Cui, Z. High-performance metal-oxide thin-film transistors based on inkjet-printed self-confined bilayer heterojunction channels. J. Mater. Chem. C 2019, 7, 6169–6177. [Google Scholar] [CrossRef]
- Hennek, J.W.; Jeremy, S.; Aiming, Y.; Myung-Gil, K.; Wei, Z.; Dravid, V.P.; Antonio, F.; Marks, T.J. Oxygen “getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. J. Am. Chem. Soc. 2013, 135, 10729–10741. [Google Scholar] [CrossRef]
- Glynn, C.; O’Dwyer, C. Solution Processable Metal Oxide Thin Film Deposition and Material Growth for Electronic and Photonic Devices. Adv. Mater. Interfaces 2017, 4, 1600610. [Google Scholar] [CrossRef]
- Garlapati, S.K.; Divya, M.; Breitung, B.; Kruk, R.; Dasgupta, S. Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices. Adv. Mater. 2018, 30, 1707600. [Google Scholar] [CrossRef]
- Seo, J.S.; Jeon, J.H.; Hwang, Y.H.; Park, H.; Ryu, M.; Park, S.H.; Bae, B.S. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 2013, 3, 2085. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-H.; Chang, C.-Y.; Cheng, C.-H.; Chiou, S.-H.; Huang, C.-H. High Mobility Bilayer Metal–Oxide Thin Film Transistors Using Titanium-Doped InGaZnO. IEEE Electron Device Lett. 2014, 35, 87–89. [Google Scholar] [CrossRef]
- Jung, H.Y.; Kang, Y.; Hwang, A.Y.; Lee, C.K.; Han, S.; Kim, D.H.; Bae, J.U.; Shin, W.S.; Jeong, J.K. Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor. Sci. Rep. 2014, 4, 3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.X.; Liu, A.; Shan, F.K.; Meng, Y.; Shin, B.C.; Fortunato, E.; Martins, R. High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Appl. Phys. Lett. 2014, 105, 113509. [Google Scholar] [CrossRef]
- Yang, C.P.; Chang, S.J.; Chang, T.H.; Wei, C.Y.; Juan, Y.M.; Chiu, C.J.; Weng, W.Y. Thin-Film Transistors With Amorphous Indium–Gallium-Oxide Bilayer Channel. IEEE Electron Device Lett. 2017, 38, 572–575. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, W.H.; Kim, D.L.; Rim, Y.S.; Choi, Y.; Ryu, M.-K.; Park, K.-B.; Kim, H.J. Low-Temperature Solution Processing of AlInZnO/InZnO Dual-Channel Thin-Film Transistors. IEEE Electron Device Lett. 2011, 32, 1242–1244. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, H.-N. Improvement of the Performance and Stability of Oxide Semiconductor Thin-Film Transistors Using Double-Stacked Active Layers. IEEE Electron Device Lett. 2012, 33, 818–820. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Park, J.; Lee, S.E.; Lee, E.G.; Im, C.; Lim, K.H.; Kim, Y.S. Solution-Grown Homojunction Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2019, 11, 4103–4110. [Google Scholar] [CrossRef]
- Khim, D.; Lin, Y.H.; Nam, S.; Faber, H.; Tetzner, K.; Li, R.; Zhang, Q.; Li, J.; Zhang, X.; Anthopoulos, T.D. Modulation-Doped In2O3/ZnO Heterojunction Transistors Processed from Solution. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Lee, M.; Jo, J.W.; Kim, Y.J.; Choi, S.; Kwon, S.M.; Jeon, S.P.; Facchetti, A.; Kim, Y.H.; Park, S.K. Corrugated Heterojunction Metal-Oxide Thin-Film Transistors with High Electron Mobility via Vertical Interface Manipulation. Adv. Mater. 2018, e1804120. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Li, W.; Faber, H.; Seitkhan, A.; Hastas, N.A.; Khim, D.; Zhang, Q.; Zhang, X.; Pliatsikas, N.; Tsetseris, L.; et al. Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nat. Electron. 2019, 2, 587–595. [Google Scholar] [CrossRef]
- Yang, J.-H.; Choi, J.H.; Cho, S.H.; Pi, J.-E.; Kim, H.-O.; Hwang, C.-S.; Park, K.; Yoo, S. Highly Stable AlInZnSnO and InZnO Double-Layer Oxide Thin-Film Transistors With Mobility Over 50 cm/vs for High-Speed Operation. IEEE Electron Device Lett. 2018, 39, 508–511. [Google Scholar] [CrossRef]
- Chen, X.; Wan, J.; Wu, H.; Liu, C. ZnO bilayer thin film transistors using H2O and O3 as oxidants by atomic layer deposition. Acta Mater. 2020, 185, 204–210. [Google Scholar] [CrossRef]
- Tian, Y.; Han, D.; Zhang, S.; Huang, F.; Shan, D.; Cong, Y.; Cai, J.; Wang, L.; Zhang, S.; Zhang, X.; et al. High-performance dual-layer channel indium gallium zinc oxide thin-film transistors fabricated in different oxygen contents at low temperature. Jpn. J. Appl. Phys. 2014, 53, 04EF07. [Google Scholar] [CrossRef]
- Abliz, A.; Huang, C.W.; Wang, J.; Xu, L.; Liao, L.; Xiao, X.; Wu, W.W.; Fan, Z.; Jiang, C.; Li, J.; et al. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors. ACS Appl. Mater. Interfaces 2016, 8, 7862–7868. [Google Scholar] [CrossRef]
- Cong, Y.; Han, D.; Zhou, X.; Huang, L.; Shi, P.; Yu, W.; Zhang, Y.; Zhang, S.; Zhang, X.; Wang, Y. High-Performance Al–Sn–Zn–O Thin-Film Transistor With a Quasi-Double-Channel Structure. IEEE Electron Device Lett. 2016, 37, 53–56. [Google Scholar] [CrossRef]
- Sun Il, K.; Jung, K.C.; Chul, P.J.; Ihun, S.; Wook, K.S.; Huaxiang, Y.; Eunha, L.; Chul, L.J.; Youngsoo, P. High performance oxide thin film transistors with double active layers. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar]
- Chen, Z.; Han, D.; Zhao, N.; Cong, Y.; Jing, W.; Dong, J.; Zhao, F.; Liu, L.; Zhang, S.; Xing, Z. High-performance dual-layer channel ITO/TZO/TFTs fabricated on glass substrate. Electron. Lett. 2014, 50, 633–635. [Google Scholar] [CrossRef]
- He, J.; Li, G.; Lv, Y.; Wang, C.; Liu, C.; Li, J.; Flandre, D.; Chen, H.; Guo, T.; Liao, L. Defect Self-Compensation for High-Mobility Bilayer InGaZnO/In2O3Thin-Film Transistor. Adv. Electron. Mater. 2019, 5, 1900125. [Google Scholar] [CrossRef]
- Furuta, M.; Koretomo, D.; Magari, Y.; Aman, S.G.M.; Higashi, R.; Hamada, S. Heterojunction channel engineering to enhance performance and reliability of amorphous In–Ga–Zn–O thin-film transistors. Jpn. J. Appl. Phys. 2019, 58, 090604. [Google Scholar] [CrossRef]
- Kim, J.-I.; Hwan Ji, K.; Yoon Jung, H.; Yeob Park, S.; Choi, R.; Jang, M.; Yang, H.; Kim, D.-H.; Bae, J.-U.; Dong Kim, C.; et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface. Appl. Phys. Lett. 2011, 99, 122102. [Google Scholar] [CrossRef]
- Chong, E.; Lee, S.Y. Influence of a highly doped buried layer for HfInZnO thin-film transistors. Semicond. Sci. Technol. 2012, 27, 012001. [Google Scholar] [CrossRef]
- Jo, K.-W.; Moon, S.-W.; Cho, W.-J. Fabrication of high-performance ultra-thin-body SnO2 thin-film transistors using microwave-irradiation post-deposition annealing. Appl. Phys. Lett. 2015, 106, 043501. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Hsu, C.C.; Tseng, M.H.; Shyue, J.J.; Tsai, F.Y. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. Acs Appl. Mater. Interfaces 2015, 7, 22610–22617. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kang, B.H.; Kim, H.J. A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Adv. Funct. Mater. 2019, 1904632. [Google Scholar] [CrossRef]
- Jeong, W.H.; Kim, K.M.; Kim, D.L.; Rim, Y.S.; Kim, H.J. The Effects of Dual-Active-Layer Modulation on a Low-Temperature Solution-Processed Oxide Thin-Film Transistor. IEEE Trans. Electron Devices 2012, 59, 2149–2152. [Google Scholar] [CrossRef]
- Kim, D.J.; Rim, Y.S.; Kim, H.J. Enhanced electrical properties of thin-film transistor with self-passivated multistacked active layers. ACS Appl. Mater. Interfaces 2013, 5, 4190–4194. [Google Scholar] [CrossRef]
- Kim, C.H.; Rim, Y.S.; Kim, H.J. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process. ACS Appl. Mater. Interfaces 2013, 5, 6108–6112. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, N.; Smith, J.; Lin, H.; Stallings, K.; Yu, J.; Marks, T.J.; Facchetti, A. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. ACS Appl. Mater. Interfaces 2013, 5, 7983–7988. [Google Scholar] [CrossRef]
- Seo, J.S.; Bae, B.S. Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT. ACS Appl. Mater. Interfaces 2014, 6, 15335–15343. [Google Scholar] [CrossRef]
- Rim, Y.S.; Chen, H.; Kou, X.; Duan, H.S.; Zhou, H.; Cai, M.; Kim, H.J.; Yang, Y. Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways. Adv. Mater. 2014, 26, 4273–4278. [Google Scholar] [CrossRef]
- Lin, Y.H.; Faber, H.; Labram, J.G.; Stratakis, E.; Sygellou, L.; Kymakis, E.; Hastas, N.A.; Li, R.; Zhao, K.; Amassian, A.; et al. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices. Adv. Sci. 2015, 2, 1500058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.; Yang, J.-H.; Cho, S.H.; Choi, J.H.; Kwon, O.-S.; Park, E.-S.; Lee, S.-J.; Cho, K.-I.; Jang, J.; Hwang, C.-S. Solution-processed indium-free ZnO/SnO2 bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities. J. Mater. Chem. C 2016, 4, 11298–11304. [Google Scholar] [CrossRef]
- Tetzner, K.; Isakov, I.; Regoutz, A.; Payne, D.J.; Anthopoulos, T.D. The impact of post-deposition annealing on the performance of solution-processed single layer In2O3 and isotype In2O3/ZnO heterojunction transistors. J. Mater. Chem. C 2017, 5, 59–64. [Google Scholar] [CrossRef]
- Faber, H.; Das, S.; Lin, Y.H.; Pliatsikas, N.; Zhao, K.; Kehagias, T.; Dimitrakopulos, G.; Amassian, A.; Patsalas, P.A.; Anthopoulos, T.D. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 2017, 3, e1602640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Huang, W.; Sangwan, V.K.; Wang, B.; Zeng, L.; Wang, G.; Huang, Y.; Lu, Z.; Bedzyk, M.J.; Hersam, M.C.; et al. Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors. Adv. Mater. 2019, 31, e1805082. [Google Scholar] [CrossRef] [PubMed]
- Khim, D.; Lin, Y.H.; Anthopoulos, T.D. Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors. Adv. Funct. Mater. 2019, 29, 1902591. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.; Liang, X.; Pei, Y. Solution Processed AlInO/In2O3 Heterostructure Channel Thin Film Transistor with Enhanced Performance. Adv. Electron. Mater. 2019, 5, 1900550. [Google Scholar] [CrossRef]
- Nadarajah, A.; Wu, M.Z.B.; Archila, K.; Kast, M.G.; Smith, A.M.; Chiang, T.H.; Keszler, D.A.; Wager, J.F.; Boettcher, S.W. Amorphous In–Ga–Zn Oxide Semiconducting Thin Films with High Mobility from Electrochemically Generated Aqueous Nanocluster Inks. Chem. Mater. 2015, 27, 5587–5596. [Google Scholar] [CrossRef]
Channel | Mobility (cm2·V−1·s−1) | Ion/Ioff | Subthreshold Swing | Dielectric | Year | Reference |
---|---|---|---|---|---|---|
ITO/GIZO | 104 | 108 | 0.25 | PECVD SiO2 | 2008 | [37] |
ZTO/ITO | 52 | 108 | - | PECVD SiO2 | 2010 | [7] |
IZO/IGZO | 30 | 108 | - | PECVD SiO2 | 2010 | [11] |
HxIZO/HyIZO | 15 | 1010 | - | Thermal SiO2 | 2010 | [3] |
IGZO/GZO | 10 | 107 | 0.93 | Thermal SiO2 | 2011 | [6] |
IGZO/ZIO | 18 | 1010 | - | PECVD SiO2 | 2011 | [10] |
ZTO/ITO | 43 | 107 | 0.18 | PECVD SiO2 | 2011 | [41] |
HIZO/IZO | 41.4 | 107 | 1.45 | Thermal SiO2 | 2011 | [42] |
IZO/GIZO | 48 | 1010 | - | PECVD SiO2 | 2012 | [27] |
HIZO/IZO | 48 | 107 | 0.28 | PECVD SiO2 | 2012 | [13] |
IGZO/IGZO:Ti | 63 | 106 | 0.73 | HfO2 | 2014 | [22] |
ZTO/IZO | 32 | 108 | 0.20 | PECVD SiO2 | 2014 | [23] |
ITO/TZO | 105 | 107 | 0.33 | PECVD SiO2 | 2014 | [38] |
In2O3/IZO | 38 | 109 | 0.12 | ZrO2 | 2014 | [24] |
High-O-IGZO/Low-O-IGZO | 60 | 108 | 0.2 | Thermal SiO2 | 2014 | [34] |
IZO/AZTO | 53.2 | 1010 | 0.15 | PECVD SiO2 | 2016 | [12] |
ZnO-H/ZnO | 43 | 108 | 0.13 | Thermal SiO2 | 2016 | [35] |
L-AZTO/H-ATZO | 108 | 109 | 0.15 | PECVD SiO2 | 2016 | [36] |
IGXO/IGYO | 53.2 | 107 | 0.19 | PECVD SiO2 | 2017 | [25] |
AIZTO/IZO | 53 | 1010 | 0.15 | PECVD SiO2 | 2018 | [32] |
In2O3/IGZO | 64.4 | 107 | 0.20 | Thermal SiO2 | 2019 | [39] |
In2O3/IGZO | 67.5 | 107 | 0.08 | HfO2 | 2019 | [39] |
In2O3/IGZO | 79.1 | 107 | 0.09 | Si3N4 | 2019 | [39] |
ZnO(DEZ+O3)/ZnO(DEZ+H2O) | 31.1 | 107 | 0.21 | Al2O3 | 2019 | [33] |
IGZO/IGZO | 24.7 | 107 | 0.1 | Thermal SiO2 | 2019 | [40] |
SnO2 | 35.4 | 107 | - | Thermal SiO2 | 2015 | [43] |
ZnO | 20 | 105 | 0.38 | TiO2/Al2O3 | 2015 | [44] |
Channel | Processing Temperature (°C) | Mobility (cm2·V−1·s−1) | Ion/Ioff | Subthreshold Swing | Dielectric | Year | Reference |
---|---|---|---|---|---|---|---|
AIZO/IZO | 350 | 1.57 | 107 | 0.59 | SiO2 | 2011 | [26] |
AIZO/IZO | 350 | 5.62 | 106 | 0.53 | SiO2 | 2012 | [46] |
IGZO/IGZO | 450 | 2.4 | 107 | 0.69 | SiO2 | 2013 | [47] |
ZTO/IGZO | 450 | 2.09 | 107 | 0.49 | SiO2 | 2013 | [48] |
In2O3/IGO | 250 | 2.6 | 108 | - | SiO2 | 2013 | [49] |
AIZO/IZO | 350 | 23.4 | 107 | 0.27 | SiO2 | 2014 | [50] |
ITZO/IGZO | 450 | 22.16 | 107 | 0.51 | SiO2 | 2014 | [51] |
ITZO/IGZO | 450 | 40.03 | 105 | 0.12 | ZrO2 | 2014 | [51] |
QSL-III 1 | 200 | 40 | 104 | 0.27 | AlOx/ZrOx | 2015 | [52] |
ZnO/SnO2 | 300 | 15.4 | 107 | - | SiO2 | 2016 | [53] |
In2O3/ZnO | 400 | 48 | 104 | SiO2 | 2016 | [54] | |
In2O3/ZnO | 250 | 45 | 107 | - | SiO2 | 2017 | [55] |
In2O3/Li-ZnO | 350 | 11.4 | 105 | - | SiO2 | 2017 | [29] |
ITZO/IGZO | 350 | 38 | 108 | 0.41 | SiO2 | 2018 | [30] |
In2O3/PEI-In2O3 2 | 250 | 10 | 106 | - | SiO2 | 2018 | [56] |
In2O3/PEI-In2O3 2 | 250 | 30 | 106 | - | ZrO2 | 2018 | [56] |
In2O3/IGZO | 400 | 14.5 | 106 | - | SiO2 | 2019 | [17] |
In2O3/ZnO-NPS/PS/ZnO | 200 | 50.7 | 106 | 2.71 | SiO2 | 2019 | [31] |
IZIZ 3 | 200 | 11.4 | 107 | - | SiO2 | 2019 | [57] |
Li-IZIZ 4 | 200 | 25 | 108 | - | AlOx/ZrO2 | 2019 | [57] |
AlInO/In2O3 | 300 | 40 | 107 | 0.7 | SiO2 | 2019 | [58] |
In2O3/In2O3 | 250 | 50 | 106 | - | SiO2 | 2019 | [28] |
IGZO | 150 | 14 | 108 | 0.17 | Al2O3 | 2012 | [14] |
InSmO | 350 | 21.5 | 108 | 0.66 | SiO2 | 2020 | [15] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, C.; Zhu, D.; Cao, P.; Han, S.; Lu, Y.; Fang, M.; Liu, W.; Xu, W. Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors. Nanomaterials 2020, 10, 965. https://doi.org/10.3390/nano10050965
Li Y, Zhao C, Zhu D, Cao P, Han S, Lu Y, Fang M, Liu W, Xu W. Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors. Nanomaterials. 2020; 10(5):965. https://doi.org/10.3390/nano10050965
Chicago/Turabian StyleLi, Yanwei, Chun Zhao, Deliang Zhu, Peijiang Cao, Shun Han, Youming Lu, Ming Fang, Wenjun Liu, and Wangying Xu. 2020. "Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors" Nanomaterials 10, no. 5: 965. https://doi.org/10.3390/nano10050965
APA StyleLi, Y., Zhao, C., Zhu, D., Cao, P., Han, S., Lu, Y., Fang, M., Liu, W., & Xu, W. (2020). Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors. Nanomaterials, 10(5), 965. https://doi.org/10.3390/nano10050965