Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Materials
2.2. Transmission Electron Microscopy (TEM) Analysis of E171 Materials
2.2.1. Sample Preparation
2.2.2. TEM Specimen (Grid) Preparation
2.2.3. Descriptive TEM
2.2.4. Electron Diffraction
2.2.5. High-Angle Annular Dark Field (HAADF)–Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X-ray Spectroscopy (EDX)
2.2.6. Quantitative TEM: Imaging, Image Analysis, and Data Analysis
2.2.7. Measurement Uncertainties
2.3. Single-Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS) Analysis of E171 Materials
2.3.1. Sample Preparation
2.3.2. Instrumentation and Analysis
2.3.3. Measurement Uncertainties
3. Results
3.1. Zeta Potential Measurements
3.2. Descriptive TEM Analysis and Electron Diffraction
3.3. HAADF-STEM and EDX Analysis
3.4. Quantitative TEM Analysis
3.4.1. Evaluation of Sample Preparation for Quantitative TEM Analysis
3.4.2. Evaluation of Image Analysis
3.4.3. Quantitative TEM Results
3.5. spICP-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EU 1129/2011. Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, 295, 1–177. [Google Scholar]
- European Commission Commission Regulation (EU). No. 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council. Off. J. Eur. Union 2012, 83, 1–295. [Google Scholar]
- Joint Expert Committee on Food Additives. Compendium of Food Additive Specifications: Joint FAO/WHO Expert Committee on Food Additives. In Proceedings of the 77th Meeting 2013, Rome, Italy, 4–13 June 2013. [Google Scholar]
- EFSA Panel on Food Additives. Nutrient Sources added to Food Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J. 2016, 14, e04545. [Google Scholar] [CrossRef]
- Skocaj, M.F.M. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011, 45, 227–247. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. ACS Publ. 2012, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.J.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H.P.; Marvin, H.J.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C.; Thompson, R.P.; Commisso, J.; Keen, C.L.; Powell, J.J. Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 2000, 125, 2339–2343. [Google Scholar] [CrossRef] [PubMed]
- Faust, J.J.; Doudrick, K.; Yang, Y.; Capco, D.G.; Westerhoff, P. A facile method for separating and enriching nano and submicron particles from titanium dioxide found in food and pharmaceutical products. PLoS ONE 2016, 11, e0164712. [Google Scholar] [CrossRef] [Green Version]
- Ropers, M.-H.; Terrisse, H.; Mercier-Bonin, M.; Humbert, B. Titanium Dioxide as Food Additive. In Application of Titanium Dioxide; Janus, M., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3429-9. [Google Scholar]
- Bachler, G.; von Goetz, N.; Hungerbuhler, K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015, 9, 373–380. [Google Scholar] [CrossRef]
- Rompelberg, C.; Heringa, M.B.; van Donkersgoed, G.; Drijvers, J.; Roos, A.; Westenbrink, S.; Peters, R.; van Bemmel, G.; Brand, W.; Oomen, A.G. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 2016, 10, 1404–1414. [Google Scholar] [CrossRef] [Green Version]
- Sprong, C.; Bakker, M.; Niekerk, M.; Vennemann, F. Exposure Assessment of the Food Additive Titanium Dioxide (E 171) Based on Use Levels Provided by the Industry; RIVM Letter report 2015-0195; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2015. [Google Scholar]
- Jones, K.; Morton, J.; Smith, I.; Jurkschat, K.; Harding, A.-H.; Evans, G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015, 233, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.-S.; Kang, B.-C.; Lee, J.K.; Jeong, J.; Che, J.-H.; Seok, S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol. 2013, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNicoll, A.; Kelly, M.; Aksoy, H.; Kramer, E.; Bouwmeester, H.; Chaudhry, Q. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake. J. Nanopart. Res. 2015, 17, 66. [Google Scholar] [CrossRef]
- Burger-van Paassen, N.; Vincent, A.; Puiman, P.J.; van der Sluis, M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; van Seuningen, I.; Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009, 420, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Tomas, J.; Wrzosek, L.; Bouznad, N.; Bouet, S.; Mayeur, C.; Noordine, M.; Honvo-Houeto, E.; Langella, P.; Thomas, M.; Cherbuy, C. Primocolonization is associated with colonic epithelial maturation during conventionalization. FASEB J. 2013, 27, 645–655. [Google Scholar] [CrossRef]
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Duan, W.; Wang, Q.; Li, X. The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf. B 2010, 78, 171–176. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 2011, 51, 1872–1881. [Google Scholar] [CrossRef]
- Taylor, A.A.; Marcus, I.M.; Guysi, R.L.; Walker, S.L. Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota. Environ. Eng. Sci. 2015, 32, 602–612. [Google Scholar] [CrossRef]
- Waller, T.; Chen, C.; Walker, S.L. Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environ. Eng. Sci. 2017, 34, 537–550. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juge, N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 2012, 20, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Ouwerkerk, J.P.; de Vos, W.M.; Belzer, C. Glycobiome: Bacteria and mucus at the epithelial interface. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chanéac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part. Fibre Toxicol. 2014, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeneman, B.A.; Zhang, Y.; Westerhoff, P.; Chen, Y.; Crittenden, J.C.; Capco, D.G. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol. Toxicol. 2010, 26, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Pietroiusti, A.; Magrini, A.; Campagnolo, L. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Gitrowski, C.; Al-Jubory, A.R.; Handy, R.D. Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicol. Lett. 2014, 226, 264–276. [Google Scholar] [CrossRef]
- Janer, G.; Mas del Molino, E.; Fernández-Rosas, E.; Fernández, A.; Vázquez-Campos, S. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2014, 228, 103–110. [Google Scholar] [CrossRef]
- Böckmann, J.; Lahl, H.; Eckert, T.; Unterhalt, B. [Blood titanium levels before and after oral administration titanium dioxide]. Pharmazie 2000, 55, 140–143. [Google Scholar]
- Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale 2015, 7, 7352–7360. [Google Scholar] [CrossRef] [Green Version]
- Bettini, S.; Boutet-Robinet, E.; Cartier, C.; Coméra, C.; Gaultier, E.; Dupuy, J.; Naud, N.; Taché, S.; Grysan, P.; Reguer, S.; et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Ortega, I.M.; Garduño-Balderas, L.G.; Delgado-Buenrostro, N.L.; Freyre-Fonseca, V.; Flores-Flores, J.O.; González-Robles, A.; Pedraza-Chaverri, J.; Hernández-Pando, R.; Rodríguez-Sosa, M.; León-Cabrera, S.; et al. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food Chem.Toxicol. 2016, 93, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Proquin, H.; Rodríguez-Ibarra, C.; Moonen, C.G.J.; Urrutia Ortega, I.M.; Briedé, J.J.; de Kok, T.M.; van Loveren, H.; Chirino, Y.I. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis 2017, 32, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pele, L.C.; Thoree, V.; Bruggraber, S.F.; Koller, D.; Thompson, R.P.; Lomer, M.C.; Powell, J.J. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part. Fibre Toxicol. 2015, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Elgrabli, D.; Beaudouin, R.; Jbilou, N.; Floriani, M.; Pery, A.; Rogerieux, F.; Lacroix, G. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection. PLoS ONE 2015, 10, e0124490. [Google Scholar] [CrossRef]
- Disdier, C.; Devoy, J.; Cosnefroy, A.; Chalansonnet, M.; Herlin-Boime, N.; Brun, E.; Lund, A.; Mabondzo, A. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part. Fibre Toxicol. 2015, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Hummel, T.Z.; Kindermann, A.; Stokkers, P.C.F.; Benninga, M.A.; ten Kate, F.J.W. Exogenous Pigment in Peyer Patches of Children Suspected of Having IBD. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 477–480. [Google Scholar] [CrossRef]
- Tassinari, R.; Cubadda, F.; Moracci, G.; Aureli, F.; D’Amato, M.; Valeri, M.; De Berardis, B.; Raggi, A.; Mantovani, A.; Passeri, D.; et al. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology 2014, 8, 654–662. [Google Scholar] [CrossRef]
- Periasamy, V.S.; Athinarayanan, J.; Al-Hadi, A.M.; Juhaimi, F.A.; Mahmoud, M.H.; Alshatwi, A.A. Identification of titanium dioxide nanoparticles in food products: Induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ. Toxicol. Pharmacol. 2015, 39, 176–186. [Google Scholar] [CrossRef]
- Periasamy, V.S.; Athinarayanan, J.; Al-Hadi, A.M.; Juhaimi, F.A.; Alshatwi, A.A. Effects of Titanium Dioxide Nanoparticles Isolated from Confectionery Products on the Metabolic Stress Pathway in Human Lung Fibroblast Cells. Arch. Environ. Contam. Toxicol. 2015, 68, 521–533. [Google Scholar] [CrossRef]
- Heringa, M.B.; Geraets, L.; van Eijkeren, J.C.H.; Vandebriel, R.J.; de Jong, W.H.; Oomen, A.G. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology 2016, 10, 1515–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, T.P.; Magnuson, B. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat. J. Food Sci. 2017, 82, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Martucci, N.J.; Moreno-Olivas, F.; Tako, E.; Mahler, G.J. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact 2017, 5, 70–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanović, B. Critical review of public health regulations of titanium dioxide, a human food additive: Titanium Dioxide in Human Food. Integr. Environ. Assess. Manag. 2015, 11, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamini, L.; Gimondi, S.; Violatto, M.B.; Fiordaliso, F.; Pedica, F.; Tran, N.L.; Sitia, G.; Aureli, F.; Raggi, A.; Nelissen, I.; et al. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019, 13, 1087–1101. [Google Scholar] [CrossRef]
- ANSES. Avis de l’Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail Relatif Au Risques Liés à la Ingestion de L’additif Alimentaire E 171; ANSES: Maisons-Alfort, Paris, France, 2019. [Google Scholar]
- ANSES. Avis de L’agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail Relatif à Une Demande D’avis Relatif à L’exposition Alimentaire Aux Nanoparticules de Dioxyde de Titane; ANSES: Maisons-Alfort, Paris, France, 2017. [Google Scholar]
- EFSA. EFSA statement on the review of the risks related to the exposure to the food additive titanium dioxide (E 171) performed by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). EFSA J. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-X.; Cheng, B.; Yang, Y.-X.; Cao, A.; Liu, J.-H.; Du, L.-J.; Liu, Y.; Zhao, Y.; Wang, H. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2013, 9, 1765–1774. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; Mennes, W.; et al. Scientific opinion on the proposed amendment of the EU specifications for titanium dioxide (E 171) with respect to the inclusion of additional parameters related to its particle size distribution. EFSA J. 2019, 17, e05760. [Google Scholar]
- EC. Commision recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union 2011, 275, 38–40. [Google Scholar]
- Geiss, O.; Ponti, J.; Senaldi, C.; Bianchi, I.; Mehn, D.; Barrero, J.; Gilliland, D.; Matissek, R.; Anklam, E. Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Addit. Contam. 2020, 37, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Dudefoi, W.; Terrisse, H.; Popa, A.F.; Gautron, E.; Humbert, B.; Ropers, M.-H. Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums. Food Addit. Contam. 2018, 35, 211–221. [Google Scholar] [CrossRef]
- Yang, Y.; Doudrick, K.; Bi, X.; Hristovski, K.; Herckes, P.; Westerhoff, P.; Kaegi, R. Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles. Environ. Sci. Technol. 2014, 48, 6391–6400. [Google Scholar] [CrossRef]
- Yusoff, R.; Nguyen, L.T.H.; Chiew, P.; Wang, Z.M.; Ng, K.W. Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions. J. Nanopart. Res. 2018, 20, 76. [Google Scholar] [CrossRef]
- Verleysen, E.; Wagner, T.; Lipinski, H.-G.; Kägi, R.; Koeber, R.; Boix-Sanfeliu, A.; De Temmerman, P.-J.; Mast, J. Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano) materials. Materials 2019, 12, 2274. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.A. The ENPRA Dispersion Protocol for NANoREG; National Research Centre for the Working Environment: Copenhagen, Denmark, 2014. [Google Scholar]
- Mast, J.; Demeestere, L. Electron tomography of negatively stained complex viruses: Application in their diagnosis. Diagn. Pathol. 2009, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- NANoREG. Regulatory Testing of Nanomaterials, A Common European Approach to the Regulatory Testing of Nanomaterials. Available online: www.nanoreg.eu (accessed on 5 July 2019).
- Mast, J.; Verleysen, E.; Hodoroaba, V.-D. Ralf Kaegi Transmission Electron Microscopy (TEM). In Characterization of Nanoparticles: Measurement Procedures for Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Xu, Y.; Masayoshi, Y.; Pierre, V. Inorganic Materials Database for Exploring the Nature of Material. Jpn. J. Appl. Phys. 2011, 50. [Google Scholar] [CrossRef]
- Merkus, H.G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer: Pijnacker, The Netherlands, 2009; ISBN 978-1-4020-9015-8. [Google Scholar]
- ISO 13322-1. Particle Size Analysis—Image Analysis Methods—Part 1: Static Image Analysis Methods; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Mech, A.; Rauscher, H.; Rasmussen, K.; Babick, F.; Hodoroaba, V.D.; Ghanem, A.; Wohlleben, W.; Marvin, H.J.; Brüngel, R.; Friedrich, C.M.; et al. JRC Technical Report: The NanoDefine Methods Manual: Part 3 Standard Operating Procedures (SOPs); Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Wagner, T. Ij-Particlesizer: ParticleSizer 1.0.1. Available online: https://zenodo.org/record/820296#.XAZ9XttKi00 (accessed on 5 July 2019).
- ISO 9276-1. Representation of Results of Particle Size Analysis—Part 1: Graphical Representation; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- ISO 9276-3. Representation of Results of Particle Size Analysis—Part 3: Adjustment of an Experimental Curve to a Reference Model; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.; Herrera-Rivera, Z.; Undas, A.; van der Lee, M.; Marvin, H.; Bouwmeester, H.; Weigel, S. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J. Anal. Atom. Spectrom. 2015, 30, 1274–1285. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Lesher, E.K.; Bednar, A.; Monserud, J.; Higgins, C.P.; Ranville, J.F. Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115–121. [Google Scholar] [CrossRef]
- Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Anal. Chem. 2012, 84, 3965–3972. [Google Scholar] [CrossRef]
- Waegeneers, N.; De Vos, S.; Verleysen, E.; Ruttens, A.; Mast, J. Estimation of the Uncertainties Related to the Measurement of the Size and Quantities of Individual Silver Nanoparticles in Confectionery. Materials 2019, 12, 2677. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.B.; Williams, D.B. Transmission Electron Microscopy; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 1-280-38272-4. [Google Scholar]
- Guiot, C.; Spalla, O. Stabilization of TiO(2) Nanoparticles in Complex Medium through a pH Adjustment Protocol. Environ. Sci. Technol. 2013, 47, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Dudefoi, W.; Terrisse, H.; Richard-Plouet, M.; Gautron, E.; Popa, F.; Humbert, B.; Ropers, M.-H. Criteria to define a more relevant reference sample of titanium dioxide in the context of food: A multiscale approach. Food Addit. Contam. 2017, 34, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rezwan, K.; Studart, A.R.; Vörös, J.; Gauckler, L.J. Change of ζ Potential of Biocompatible Colloidal Oxide Particles upon Adsorption of Bovine Serum Albumin and Lysozyme. J. Phys. Chem. B 2005, 109, 14469–14474. [Google Scholar] [CrossRef]
- McNamee, C.E.; Tsujii, Y.; Matsumoto, M. Physicochemical Characterization of an Anatase TiO2 Surface and the Adsorption of a Nonionic Surfactant: An Atomic Force Microscopy Study. Langmuir 2005, 21, 11283–11288. [Google Scholar] [CrossRef] [PubMed]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2010, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Leroy, P.; Tournassat, C.; Bizi, M. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J. Colloid Interface Sci. 2011, 356, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Bullard, J.W.; Cima, M.J. Orientation Dependence of the Isoelectric Point of TiO2 (Rutile) Surfaces. Langmuir 2006, 22, 10264–10271. [Google Scholar] [CrossRef]
- Wang, F.; Gong, H.; Liu, G.; Li, M.; Yan, C.; Xia, T.; Li, X.; Zeng, J. DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM. J. Struct. Biol. 2016, 195, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Rastar, A.; Yazdanshenas, M.E.; Rashidi, A.; Bidoki, S.M. Estimation and prediction of optical properties of PA6/TiO2 nanocomposites. Arab. J. Chem. 2017, 10, S219–S224. [Google Scholar] [CrossRef] [Green Version]
- Elim, H.I.; Cai, B.; Kurata, Y.; Sugihara, O.; Kaino, T.; Adschiri, T.; Chu, A.-L.; Kambe, N. Refractive Index Control and Rayleigh Scattering Properties of Transparent TiO2 Nanohybrid Polymer. J. Phys. Chem. B 2009, 113, 10143–10148. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16. [Google Scholar] [CrossRef] [Green Version]
Reference | Country of Webshop | Magnification | LLOD (nm) | LLOQ (nm) | ULOD (nm) | ULOQ (nm) | Image Analysis Mode |
---|---|---|---|---|---|---|---|
E171-01 | France | 13,000× | 0.83 | 8.3 | 3386 | 338.6 | Watershed |
E171-02 | UK | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-03 | The Netherlands | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-04 | UK | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-05 | The Netherlands | 13,000× | 0.83 | 8.3 | 3386 | 338.6 | Watershed |
E171-06 | France | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-07 | France | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-08 | The Netherlands | 13,000× | 0.83 | 8.3 | 3386 | 338.6 | Watershed |
E171-09 | France | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-A | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-B | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-C | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-D | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-E | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
E171-F | Not from webshop | 9300× | 1.15 | 11.5 | 4730 | 473.0 | Ellipse fitting |
Protocol | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
Weighed mass | 25 mg | 88 mg | 88 mg | 88 mg | 88 mg | 88 mg |
Concentration | 2.5 mg/mL | 2.5 mg/mL | 2.5 mg/mL | 2.5 mg/mL | 2.5 mg/mL | 2.5 mg/mL |
pH | 10 | 6–7 | 6–7 | 6–7 | 6–7 | 6–7 |
Probe sonication | 35 kJ | - | - | 10 kJ | 10 kJ | 10 kJ |
Centrifugation | - | 30’ | 2 h | - | 30’ | 2 h |
Instrument Parameter | Operation Settings | |
---|---|---|
Nebulizer | Micromist | |
Spray chamber | Quartz, double pass | |
Sampler and skimmer cones | Nickel | |
Radio Frequency (RF) power (W) | 1550 | |
Plasma gas flow (L min−1) | 15 | |
Auxiliary gas flow (L min−1) | 0.90 | |
Carrier gas flow (L min−1) | 1.04 | |
Cell gas | 10% NH3/90% He | |
Cell gas flow rate (mL min−1) | 2 | |
Sample flow rate (mL min−1) | 0.47 ± 0.02 | |
Sampling depth | Ti: 4.3 ± 0.4 Au: 6.6 ± 0.3 | |
Dwell time (ms) | 3 | |
Sampling time (min) | 1 | |
Transport efficiency (%) | 4.8 ± 0.9 | |
Monitored element | Ti | Au |
Isotope (amu) monitored at Q1–Q2 | 48–150 | 197–197 |
Elemental composition of the target particle | TiO2 | Au |
Density (g cm−3) | 4.23 | 19.3 |
Mass fraction particle/analyte | 1.67 | 1.0 |
Ionization efficiency (%) | 100 | 100 |
ESD | Particle Mass Concentration | Particle Number Concentration | |
---|---|---|---|
Repeatability within five series of three repeats (relative standard deviation in percent of average; %) | 4.9 | 18 | 17 |
Reproducibility between five series (relative standard deviation in percent of average; %) | 8.2 | 23 | 13 |
Size detection limit (nm) | 39 | - | - |
Concentration detection limit (ng/L or particles/L) 1 | - | 50 | 200 |
Relative recovery compared (%) | 107 | 96 | - |
Uncertainty budget for the mean of three repeats analyzed on a single day | |||
Repeatability uncertainty (%) | 2.8 | 10 | 10 |
Between-day uncertainty (%) | 6.5 | 23 | 13 |
Trueness uncertainty (%) | 5.1 | 11 | 7 |
Combined measurement uncertainty (%; k = 1) | 8.8 | 27.5 | 18 |
Expanded measurement uncertainty (%; k = 2) | 18 | 55 | 36 |
(a) Constituent particles | |||||||
Protocol | P1 | P2 | P3 | P4 | P5 | P6, rep 1 | P6, rep 2 |
Fmin (nm) | 89 ± 8 | 97 ± 8 | 98 ± 8 | 90 ± 8 | 91 ± 8 | 88 ± 7 | 85 ± 7 |
Fmax (nm) | 105 ± 10 | 119 ± 11 | 119 ± 11 | 106 ± 10 | 110 ± 10 | 105 ± 10 | 100 ± 9 |
AR | 1.16 ± 0.04 | 1.23 ± 0.05 | 1.21 ± 0.04 | 1.16 ± 0,04 | 1.18 ± 0.04 | 1.16 ± 0.04 | 1.14 ± 0.04 |
(b) Agglomerates | |||||||
---|---|---|---|---|---|---|---|
Protocol | P1 | P2 | P3 | P4 | P5 | P6, rep 1 | P6, rep 2 |
Fmin (nm) | 102 | 263 | 224 | 110 | 149 | 113 | 96 |
Fmax (nm) | 130 | 371 | 327 | 151 | 225 | 164 | 127 |
AR | 1.15 | 1.39 | 1.35 | 1.21 | 1.30 | 1.24 | 1.16 |
Reference | Structure | TEM P1 | TEM P6 | % of Constituent Particles with Fmin <100 nm | ||||
---|---|---|---|---|---|---|---|---|
Median Fmin (nm) | Median Fmax (nm) | Median AR | Median Fmin (nm) | Median Fmax (nm) | Median AR | |||
E171-01 | Pearlescent Pigment | 30 ± 3 | 44 ± 5 | 1.30 ± 0.05 | / | / | / | 100 |
E171-02 | Anatase | 87 ± 7 | 104 ± 9 | 1.18 ± 0.04 | 79 ± 7 | 94 ± 9 | 1.17 ± 0.04 | 74 |
E171-03 | Anatase | 88 ± 7 | 104 ± 9 | 1.16 ± 0.04 | 89 ± 8 | 106 ± 10 | 1.15 ± 0.04 | 64 |
E171-04 | Anatase | 92 ± 8 | 112 ± 10 | 1.18 ± 0.04 | 86 ± 7 | 102 ± 9 | 1.15 ± 0.04 | 67 |
E171-05 | Pearlescent pigment | 20 ± 2 | 28 ± 3 | 1.27 ± 0.05 | / | / | / | 100 |
E171-06 | Anatase | 89 ± 8 | 105 ± 10 | 1.16 ± 0.04 | 88 ± 7 | 105 ± 10 | 1.16 ± 0.04 | 65 |
E171-07 | Anatase | 83 ± 7 | 97 ± 9 | 1.18 ± 0.04 | 79 ± 7 | 93 ± 8 | 1.17 ± 0.04 | 73 |
E171-08 | Pearlescent pigment | 17 ± 2 | 25 ± 3 | 1.32 ± 0.06 | / | / | / | 100 |
E171-09 | Anatase | 86 ± 7 | 103 ± 9 | 1.17 ± 0.04 | 84 ± 7 | 99 ± 9 | 1.16 ± 0.04 | 71 |
E171-A | Anatase | 118 ± 10 | 143 ± 13 | 1.17 ± 0.04 | 110 ± 9 | 128 ± 12 | 1.14 ± 0.04 | 40 |
E171-B | Anatase | 97 ± 8 | 120 ± 11 | 1.20 ± 0.04 | 83 ± 7 | 98 ± 9 | 1.15 ± 0.04 | 70 |
E171-C | Anatase | 102 ± 9 | 127 ± 12 | 1.22 ± 0/05 | 94 ± 8 | 113 ± 10 | 1.18 ± 0.04 | 56 |
E171-D | Anatase | 132 ± 11 | 156 ± 14 | 1.16 ± 0.04 | 149 ± 13 | 178 ± 16 | 1.18 ± 0.04 | 18 |
E171-E | Anatase | 92 ± 8 | 113 ± 10 | 1.19 ± 0.04 | 86 ± 7 | 103 ± 9 | 1.17 ± 0.04 | 65 |
E171-F | Rutile | 130 ± 12 | 168 ± 15 | 1.26 ± 0.05 | 139 ± 12 | 182 ± 17 | 1.28 ± 0.05 | 20 |
Reference | Median ESD (nm) | Particle Mass Concentration (kg/kg) | Particle Number Concentration (particles/kg) | % of Constituent Particles with ESD <100 nm |
---|---|---|---|---|
E171-01 | / | / | / | |
E171-02 | 90 ± 16 | 0.81 ± 0.45 | 1.68 ± 0.60 × 1017 | 59 |
E171-03 | 83 ± 15 | 0.73 ± 0.40 | 1.71 ± 0.61 × 1017 | 64 |
E171-04 | 91 ± 16 | 0.82 ± 0.45 | 1.37 ± 0.49 × 1017 | 56 |
E171-05 | / | / | / | |
E171-06 | 93 ± 16 | 0.87 ± 0.48 | 1.44 ± 0.52 × 1017 | 54 |
E171-07 | 88 ± 15 | 0.85 ± 0.47 | 1.57 ± 0.56 × 1017 | 59 |
E171-08 | / | / | / | |
E171-09 | 89 ± 16 | 0.81 ± 0.45 | 1.73 ± 0.62 × 1017 | 58 |
E171-A | 93 ± 16 | 0.68 ± 0.37 | 1.27 ± 0.45 × 1017 | 54 |
E171-B | 91 ± 16 | 0.82 ± 0.45 | 1.80 ± 0.65 × 1017 | 56 |
E171-C | 102 ± 18 | 0.74 ± 0.41 | 1.19 ± 0.43 × 1017 | 48 |
E171-D | 125 ± 22 | 0.71 ± 0.39 | 0.57 ± 0.21 × 1017 | 33 |
E171-E | 96 ± 17 | 0.87 ± 0.48 | 1.33 ± 0.48 × 1017 | 53 |
E171-F | 125 ± 22 | 0.72 ± 0.39 | 0.69 ± 0.25 × 1017 | 32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verleysen, E.; Waegeneers, N.; Brassinne, F.; De Vos, S.; Jimenez, I.O.; Mathioudaki, S.; Mast, J. Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods. Nanomaterials 2020, 10, 592. https://doi.org/10.3390/nano10030592
Verleysen E, Waegeneers N, Brassinne F, De Vos S, Jimenez IO, Mathioudaki S, Mast J. Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods. Nanomaterials. 2020; 10(3):592. https://doi.org/10.3390/nano10030592
Chicago/Turabian StyleVerleysen, Eveline, Nadia Waegeneers, Frédéric Brassinne, Sandra De Vos, Isaac Ojea Jimenez, Stella Mathioudaki, and Jan Mast. 2020. "Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods" Nanomaterials 10, no. 3: 592. https://doi.org/10.3390/nano10030592
APA StyleVerleysen, E., Waegeneers, N., Brassinne, F., De Vos, S., Jimenez, I. O., Mathioudaki, S., & Mast, J. (2020). Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods. Nanomaterials, 10(3), 592. https://doi.org/10.3390/nano10030592