You are currently viewing a new version of our website. To view the old version click .
Computation
  • Article
  • Open Access

23 December 2022

Solutions of the Yang–Baxter Equation Arising from Brauer Configuration Algebras

,
and
1
Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No. 45-03, Bogotá 11001000, Colombia
2
Departament de Matemàtiques, Universitat de València, Dr. Moliner 50, Burjassot, 46100 València, Spain
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
This article belongs to the Special Issue Graph Theory and Its Applications in Computing

Abstract

Currently, researching the Yang–Baxter equation (YBE) is a subject of great interest among scientists of diverse areas in mathematics and other sciences. One of the fundamental open problems is to find all of its solutions. The investigation deals with developing theories such as knot theory, Hopf algebras, quandles, Lie and Jordan (super) algebras, and quantum computing. One of the most successful techniques to obtain solutions of the YBE was given by Rump, who introduced an algebraic structure called the brace, which allows giving non-degenerate involutive set-theoretical solutions. This paper introduces Brauer configuration algebras, which, after appropriate specializations, give rise to braces associated with Thompson’s group F. The dimensions of these algebras and their centers are also given.

1. Introduction

The Yang–Baxter equation (YBE) arose from research in theoretical physics and statistical mechanics. On the one hand, Yang [1] introduced in 1967 such an equation in two short papers regarding generalizations of the results obtained by Lieb and Liniger. Using the Bethe ansatz, they solved the one-dimensional repulsive Bose gas with delta function interaction. On the other hand, Baxter [2] solved the eight-vertex ice model in 1971, introduced previously by Lieb. Baxter’s method was based on commuting transfer matrices starting from a solution called by him the generalized star–triangle equation, which currently is known as the Yang–Baxter equation [3,4].
It is worth pointing out that finding a complete classification of the YBE solutions remains an open problem. However, to date, many solutions have been found to this equation. Research on this subject can be considered a trending topic. It has encouraged investigations in several science fields. For instance, the YBE has had an important role in developing Hopf algebras, Yetter–Drinfeld categories, quandles, knot theory, cluster algebras (via the Jones polynomial of a two-bridge knot), braided categories, group action relations on sets, quantum computing, cryptography, etc. [5,6,7,8,9].
Another strategy to tackle the problem of classifying some types of the YBE was introduced by Rump [10,11], who introduced the notion of the brace. Braces allow classifying so-called non-degenerate involutive set-theoretical solutions of the YBE. In particular, Ballester-Bolinches et al. [12] proved how it is possible to obtain a left brace ( G ( X , r ) , + , . ) structure from the Cayley graph of a suitable subgroup of the symmetric group Sym ( X ) associated with a set X defining a solution ( X , r ) of the YBE.
On the other hand, Brauer configuration algebras (BCAs) are bound quiver algebras [13] induced by configurations of appropriate multisets called Brauer configurations. The combinatorial data arising from these configurations provide information on the theory of representations of their corresponding Brauer configuration algebras. As in the case of the YBE, BCAs have proven to be a tool for developing different science fields. They have been used in cryptography to give an algebraic interpretation of the Advanced Encryption Standard (AES) key schedule, in the theory of graph energy to compute the trace norm of some families of matrices and trees, in coding theory to compute the energy of a code, etc. [14,15,16].
It is worth noting that Espinosa [17] proved that to be associated with a Brauer configuration. There is a message obtained by concatenating appropriate words defining their multisets named polygons by Green and Schroll [13]. Espinosa defined specializations for these messages, making them elements of suitable algebraic structures (rings, groups, etc.). Such a procedure allows new interpretations of objects and morphisms in different categories.

1.1. Motivations

Researching the classification of the YBE solutions is one of the trending topics in mathematics and its applications. Results regarding the subject involve areas such as cryptography, quantum computing, group theory, Hopf algebras, and Lie (super) algebras, among others [5,6,7,8,9]. On the other hand, Brauer configuration algebras have helped investigate the theory of graph energy, cryptography, and coding theory [14,15,16]. This work connects the Brauer configuration algebras theory with the YBE theory by introducing Brauer configurations whose specializations give rise to braces, which provide solutions to the YBE.

1.2. Contributions

This paper introduces brace families arising from appropriate Brauer configuration algebras. The dimensions of these algebras and their centers are also computed. According to Rump’s results, the obtained braces give rise to non-degenerate involutive set-theoretical solutions of the YBE.
Figure 1 shows how Brauer configuration algebras and brace theories are related to obtaining the main results presented in this paper (see the targets of red arrows).
Figure 1. Main results presented in this paper (targets of red arrows) allow establishing a connection between Brauer configuration algebras and YBE theories.
Section 3.1 introduces Brauer configuration algebras of type F ( i , j , k ) .
Theorem 2 proves that algebras of type F ( i , j , k ) are reduced and connected. Corollary 1 gives formulas for the dimensions of algebras F ( i , j , k ) and their centers. Corollary 2 proves that these Brauer configuration algebras have length grading induced by the associated path algebra as a consequence of Proposition 1.
Lemma 2 proves that messages associated with Brauer configurations of type F ( i , j , k ) induce a subgroup of Thompson’s group of type F. This lemma is used to prove that such a subgroup endowed with an appropriate sum constitute a brace, which can be used to generate non-degenerate involutive set-theoretical solutions of the YBE.
The organization of this paper is as follows. The main definitions and notation are given in Section 2. In particular, we recall the notions of the YBE, braces, and Brauer configuration algebra (Section 2.2). In Section 3, we give our main results. We introduce Brauer configurations of type F ( i , j , k ) (Section 3.1), and it is proven that the corresponding algebras are reduced, indecomposable, and have length grading induced by the associated path algebra. It is also proven that messages associated with these Brauer configurations give rise to some braces, therefore to some solutions of the YBE. Concluding remarks are given in Section 4.

3. Main Results

This section provides Brauer configurations whose specializations give rise to left braces. Solutions of the YBE are obtained according to Lemma 1. The dimensions of the corresponding Brauer configuration algebras and their centers are also given.

3.1. Brauer Configurations of Type F ( i , j , k )

Let us define the following families of labeled (by the interval [ 0 , 1 ] ) Brauer configurations, for which i , k 1 are fixed and 1 j 2 i + 1 .
F ( i , j , k ) = ( F 0 ( i , j , k ) , F 1 ( i , j , k ) = { [ f ( i , j , k , 0 ) , I ( i , j , k , 0 ) ] , , [ f ( i , j , k , k ) , I ( i , j , k , k ) ] } , ν ( i , j , k ) , O ( i , j , k ) ) .
F 0 ( i , j , k ) = { a ( i , j , k , 0 ) , a ( i , j , k , 1 ) , a ( i , j , k , 2 ) } , if i = k = 1 , { a ( i , j , k , 1 ) , a ( i , j , k , 2 ) } , if i > 1 .
The words w ( f ( i , j , k , h ) ) associated with polygons f ( i , j , k , h ) are given by the following identities, for 0 h k .
w ( f ( i , j , k , h ) ) = a ( i , j , k , 1 ) k h a ( i , j , k , 2 ) h .
ν ( i , j , k ) ( a ( i , j , k , h ) ) = ( 1 , 2 ) , if i = k = 1 , 1 j 4 , h { 1 , 2 } , ( t k , 1 ) , otherwise .
Successor sequences S x associated with a given vertex x F 0 ( i , j , k ) are built in such a way that, for i , j and k fixed, it holds that
S x = [ f ( i , j , k , 0 ) , I ( i , j , k , 0 ) ] < [ f ( i , j , k , 1 ) , I ( i , j , k , 1 ) ] < < [ f ( i , j , k , k ) , I ( i , j , k , k ) ] .
I ( i , j , k , h ) denotes a subset of the interval [ 0 , 1 ] R , i.e., the Brauer configuration F ( i , j , k ) is labeled by the closed interval [ 0 , 1 ] .
Similarly, we define Brauer configurations G ( i , j , k ) such that
G ( i , j , k ) = ( G 0 ( i , j , k ) , G 1 ( i , j , k ) = { [ g ( i , j , k , 0 ) , J ( i , j , k , 0 ) ] , , [ g ( i , j , k , k ) , J ( i , j , k , k ) ] } , ν ( i , j , k ) , O ( i , j , k ) ) .
G 0 ( i , j , k ) = { b ( i , j , k , 0 ) , b ( i , j , k , 1 ) , b ( i , j , k , 2 ) } , if i = k = 1 , { b ( i , j , k , 1 ) , b ( i , j , k , 2 ) } , if i > 1 .
For 0 h k , it holds that
w ( g ( i , j , k , h ) ) = b ( i , j , k , 2 ) h b ( i , j , k , 1 ) k h .
Multiplicities and orientations are defined as for F ( i , j , k ) .
As an example, we give the Brauer configuration algebra induced by the Brauer configuration F ( 1 , 1 , 1 ) , for which:
F 0 ( 1 , 1 , 1 ) = { a ( 1 , 1 , 1 , 0 ) , a ( 1 , 1 , 1 , 1 ) , a ( 1 , 1 , 1 , 2 ) } ; F 1 ( 1 , 1 , 1 ) = { [ f ( 1 , 1 , 1 , 0 ) , I ( 1 , 1 , 1 , 0 ) , [ f ( 1 , 1 , 1 , 1 ) , I ( 1 , 1 , 1 , 1 ) ] } , w ( f ( 1 , 1 , 1 , 0 ) ) = a ( 1 , 1 , 1 , 0 ) a ( 1 , 1 , 1 , 1 ) , w ( f ( 1 , 1 , 1 , 1 ) ) = a ( 1 , 1 , 1 , 0 ) a ( 1 , 1 , 1 , 2 ) , ν ( a ( 1 , 1 , 1 , 0 ) ) = ( 2 , 1 ) , ν ( a ( 1 , 1 , 1 , 1 ) ) = ν ( a ( 1 , 1 , 1 , 2 ) ) = ( 1 , 2 ) , S a ( 1 , 1 , 1 , 0 ) = [ f ( 1 , 1 , 1 , 0 ) , I ( 1 , 1 , 1 , 0 ) ] < [ f ( 1 , 1 , 1 , 1 ) , I ( 1 , 1 , 1 , 1 ) ] , S a ( 1 , 1 , 1 , 1 ) = [ f ( 1 , 1 , 1 , 0 ) , I ( 1 , 1 , 1 , 0 ) ] , S a ( 1 , 1 , 1 , 2 ) = [ f ( 1 , 1 , 1 , 1 ) , I ( 1 , 1 , 1 , 1 ) ] .
Figure 3 shows the Brauer quiver associated with the Brauer configuration F ( 1 , 1 , 1 ) ; for the sake of clarity, we assume the notation a ( i , j , k , h ) = h , f ( i , j , k , h ) = f h for vertices and polygons.
Figure 3. Brauer quiver induced by the Brauer configuration F ( 1 , 1 , 1 ) .
The admissible ideal I F Q F ( 1 , 1 , 1 ) is generated by relations of the following types:
  • ( l 1 j ) 3 ;
  • α i 0 l i j , l i j α i 0 , for all possible values of i and j;
  • α 1 0 α 2 0 α 1 0 , α 2 0 α 1 0 α 2 0 .
According to identities (23) and (24), we have that for 1 j 4 , it holds that
dim F Λ F ( 1 , j , 1 ) = 4 + 2 ( 2 1 ) + 1 ( 2 1 ) + 1 ( 2 1 ) = 8 , dim F Z ( Λ F ( 1 , j , 1 ) ) = 1 + 5 3 + 2 2 = 3 .
The following Theorem 2 gives the properties of the Brauer configuration algebras Λ F ( i , j , k ) .
Theorem 2.
For i , j , k 1 fixed and 1 j 2 i + 1 , the Brauer configuration algebra Λ F ( i , j , k ) is indecomposable as an algebra and the Brauer configuration F ( i , j , k ) is reduced.
Proof. 
If x F 0 ( i , j , k ) , then
ν x ( i , j , k ) = t k , if x { a i , j , k , 1 , a i , j , k , 2 } , 2 , if x = a ( i , j , k , 0 ) .
Thus, F ( i , j , k ) has no truncated vertices.
Since:
  • a ( 1 , j , 1 , 0 ) f ( 1 , j , 1 , 0 ) f ( 1 , j , 1 , 1 ) ;
  • a ( i , j , k , 1 ) f ( i , j , k , 0 ) ;
  • a ( i , j , k , 2 ) f ( i , j , k , k ) ;
  • { a i , j , k , 1 , a i , j , k , 2 } h = 1 k 1 f ( i , j , k , h ) .
as multisets, then F ( i , j , k ) is connected. Thus, the result follows as a consequence of Theorem 1. We are done. □
As a consequence of Formulas (23) and (24), the following Corollary 1 gives formulas for the dimensions of an algebra of type Λ F ( i , j , k ) and its center.
Corollary 1.
For i 1 , k > 1 , and 1 j 2 i + 1 fixed, it holds that
dim F Λ F ( i , j , k ) = 2 ( k + 1 ) + 4 t ( t k 1 ) , dim F Z ( Λ F ( i , j , k ) ) = k + 2 .
where t i = i ( i + 1 ) 2 denotes the ith triangular number.
Proof. 
Note that, if x F 0 ( i , j , k ) , then ν ( x ) = ( t k , 1 ) . Furthermore, | F 1 ( i , j , k ) | = k + 1 . □
Corollary 2.
For i 1 , j 2 i + 1 , and k 1 fixed, the algebra Λ F ( i , j , k ) has a length grading induced from the path algebra F Q F ( i , j , k ) , where Q F ( i , j , k ) is the Brauer quiver associated with the Brauer configuration F ( i , j , k ) .
Proof. 
For any x F 0 ( i , j , k ) , it holds that ν x = t k . □
Remark 2.
Note that Theorem 3 and Corollaries 1 and 2 also hold for Brauer configuration algebras Λ G ( i , j , k ) induced by Brauer configurations of type G ( i , j , k ) .

3.2. Specializations

This section defines specializations e ( i , j , k ) ( F ( i , j , k ) ) of Brauer configurations by defining maps e ( i , j , k ) : F 0 ( i , j , k ) [ 0 , 1 ] [ 0 , 1 ] , where i , k 1 , 1 j 2 i + 1 and [ 0 , 1 ] [ 0 , 1 ] is the set of functions from [ 0 , 1 ] to [ 0 , 1 ] .
For i 1 , 1 j 2 i + 1 , and k 1 fixed, we define e ( i , j , k ) ( F ( i , j , k ) ) in such a way that
e ( i , j , 1 ) ( a ( i , j , 1 , 0 ) ) ( x ) = 0 , for any x [ 0 , 1 ] , i 1 , 1 j 2 i + 1 .
e ( i , j , 1 ) ( a ( i , j , 1 , 1 ) ) ( x ) = x , if x [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] , 1 2 x + 2 + 3 ( j 1 ) 2 i + 4 , if x [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 3 ] , 0 , if x ( 2 + 3 j 2 i + 3 1 2 i + 3 , 1 ] .
where [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 3 ] corresponds to the label I ( i , j , 1 , 0 ) of f ( i , j , 1 , 0 ) .
e ( i , j , 1 ) ( a ( i , j , 1 , 2 ) ) ( x ) = 0 , if x [ 0 , 2 + 3 j 2 i + 3 1 2 i + 3 ) , 2 x 2 + 3 j 2 i + 3 , if x [ 2 + 3 j 2 i + 3 1 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 4 ] , x , if x [ 2 + 3 j 2 i + 3 1 2 i + 4 , 1 ] .
The label associated with f ( i , j , 1 , 1 ) is I ( i , j , 1 , 1 ) = [ 2 + 3 j 2 i + 3 1 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 4 ] [ 2 + 3 j 2 i + 3 1 2 i + 4 , 1 ] .
Remark 3.
If i and j are fixed, then we write a 1 k ( a 2 k ) instead of a ( i , j , k , 1 ) ( a ( i , j , k , 2 ) ). a 1 ( x ) = e ( i , j , 1 ) ( a ( i , j , 1 , 1 ) ) ( x ) , a 2 ( x ) = e ( i , j , 1 ) ( a ( i , j , 1 , 2 ) ) ( x ) , for any x I i , j , 1 , 0 ( x I ( i , j , 1 , 1 ) ).
If f [ 0 , 1 ] [ 0 , 1 ] and S u p p ( f ) = { x [ 0 , 1 ] f ( x ) 0 } , then
S u p p ( a 1 k = a 1 a 1 a 1 k times ) = [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 3 ] , S u p p ( a 1 k h a 2 h = a 1 a 1 a 1 ( k h ) times a 2 a 2 a 2 h times ) = [ 2 + 3 j 2 i + 3 1 2 h + i + 2 , 2 + 3 j 2 i + 3 1 2 h + i + 3 ] , S u p p ( a 2 k = a 2 a 2 a 2 k times ) = I ( i , j , k , k ) , I ( i , j , k , k ) = [ 2 + 3 j 2 i + 3 1 2 k + i + 2 , 2 + 3 j 2 i + 3 1 2 k + i + 3 ] [ 2 + 3 j 2 i + 3 1 2 k + i + 3 , 1 ] .
a 1 k h a 2 h is the specialization e ( i , j , k ) ( f ( i , j , k , h ) ) of the word associated with the polygon f ( i , j , k , h ) . It is a function of the form:
e ( i , j , k ) ( f ( i , j , k , h ) ) ( x ) = a 1 k h a 2 h ( x ) , if x [ 2 + 3 j 2 i + 3 1 2 h + i + 2 , 2 + 3 j 2 i + 3 1 2 h + i + 3 ] , 0 , elsewhere .
where [ 2 + 3 j 2 i + 3 1 2 h + i + 2 , 2 + 3 j 2 i + 3 1 2 h + i + 3 ] is the label I ( i , j , k , h ) associated with the polygon f ( i , j , k , h ) .
The same notation is assumed for the Brauer configuration G ( i , j , k ) . In such a case,
S u p p ( b 1 k = b 1 b 1 b 1 k times ) = [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 + 1 2 i + j + 2 ] , S u p p ( b 2 h b 1 k h = b 1 b 1 b 1 ( k h ) times b 2 b 2 b 2 h times ) = I ( i , j , k , h ) , S u p p ( b 2 k = b 2 b 2 b 2 k times ) = [ 2 + 3 j 2 i + 3 1 2 k + i + 2 , 2 + 3 j 2 i + 3 1 2 k + i + 3 ] [ 2 + 3 j 2 i + 3 1 2 k + i + 3 , 1 ] .
I ( i , j , k , h ) = [ 2 + 3 ( j 1 ) 2 i + 3 + 1 2 j h + i + 3 , 2 + 3 ( j 1 ) 2 i + 3 + 1 2 j h + i + 2 ] is the label associated with the polygon g ( i , j , k , h ) .
e ( i , j , 1 ) ( b ( i , j , 1 , 1 ) ) ( x ) = x , if x [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] , 2 x 2 + 3 ( j 1 ) 2 i + 5 , if [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 + 1 2 i + j + 2 ] , 0 , if x ( 2 + 3 j 2 i + 3 + 1 2 i + j + 2 , 1 ] .
e ( i , j , 1 ) ( b ( i , j , 1 , 2 ) ) ( x ) = 0 , if x [ 0 , 2 + 3 j 2 i + 3 + 1 2 i + j + 2 ) , 1 2 x + 2 + 3 j 2 i + 2 , if x [ 2 + 3 j 2 i + 3 1 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 4 ] , x , if x ( 2 + 3 j 2 i + 3 1 2 i + 4 , 1 ] .
For i , k 1 fixed, the specialized Brauer message M e ( i , j , k ) ( F ( i , j , k ) ) has the form (see (20) and (21)):
M e ( i , j , k ) ( F ( i , j , k ) ) = e ( i , 1 , k ) ( f ( i , j , k , 0 ) ) + e ( i , 2 , k ) ( f ( i , j , k , 1 ) ) + + e ( i , j , k , k ) ( f ( i , j , k , k ) ) = F ( i , j , k ) , F ( i , j , k ) = F ( i , j , 1 ) F ( i , j , 1 ) F ( i , j , 1 ) k times , for 1 j 2 i + 1 f i x e d .
For i , k 1 fixed, we let M ( i , j , k ) denote the set of specialized messages.
For i , k 1 , we define the sum of Brauer messages F ( i , j , k ) , F ( i , j , k ) M ( i , j , k ) in such a way that
F ( i , j , k ) + F ( i , j , k ) = F ( i , j , k ) F ( i , j , k ) .
Remark 4.
We adopt the same notation for Brauer messages and the corresponding operations associated with Brauer configurations of type G ( i , j , k ) .
We let H ( i , j , k ) denote the subset of functions from [ 0 , 1 ] to [ 0 , 1 ] such that, for i , k 1 fixed,
H ( i , j , k ) = { f [ 0 , 1 ] [ 0 , 1 ] f = F ( i , 1 , k ) α 1 , 1 + G ( i , 1 , k ) α 1 , 2 + F ( i , 2 , k ) α 2 , 1 + G ( i , 2 , k ) α 2 , 2 + + F ( i , 2 i + 1 , k ) α 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) α 2 i + 1 , 2 , α i , j 1 } , H ( i , j , k ) α t = H ( i , j , k ) H ( i , j , k ) H ( i , j , k ) α t times , H { F , G } .
It is worth recalling that Thompson’s group F (under composition) consists of those homomorphisms of the interval [ 0 , 1 ] , which satisfy the following conditions [26,27]:
  • They are piecewise linear and orientation-preserving.
  • In the pieces where the maps are linear, the slope is a power of 2.
  • Points where slopes change their values are said to be breakpoints, which are dyadic, i.e., they belong to the set B × B , where B = [ 0 , 1 ] Z [ 1 2 ] .
Breakpoints are used to identify any element f F provided that such an element has finitely many breakpoints. In other words, if the set of pairs { [ a 1 , b 1 ] , [ a 2 , b 2 ] , , [ a k , b k ] } represents f, it is assumed that ( a 0 , b 0 ) = ( 0 , 0 ) f , ( a k + 1 , b k + 1 ) = ( 1 , 1 ) f , and b i + 1 b i a i + 1 a i = 2 s , for some s 0 .
For instance, the set of pairs { ( 1 8 , 1 2 ) , ( 1 4 , 3 4 ) , ( 1 2 , 7 8 ) } defines the function:
f ( x ) = 4 x , if x [ 0 , 1 8 ] , 2 x + 1 4 , if x [ 1 8 , 1 4 ] , 1 8 ( 4 x + 5 ) , if x [ 1 4 , 1 2 ] , 1 4 ( x + 3 ) , if x [ 1 2 , 1 ] .
Some of the main properties of Thompson’s group F is that it is torsion-free and contains a free abelian subgroup of infinite rank. Furthermore, F is an example of a torsion-free F P group that is not of finite cohomological dimension.
Regarding Thompson’s group of type F, we have the following result.
Lemma 2.
For i , k 1 fixed and 1 j 2 i + 1 , ( H ( i , j , k ) , ) is a subgroup of the Thompson’s group F. In particular, H ( i , j , k ) is a subgroup of H ( i , j , k ) if k divides k.
Proof. 
Firstly, we note that, for any j, 1 j 2 i + 1 , the messages F ( i , j , k ) and G ( i , j , k ) are elements of F, provided that they are compositions of elements F ( i , j , 1 ) and G ( i , j , 1 ) , which are elements of F by definition. In fact, F ( i , j , k ) and G ( i , j , k ) are defined as follows:
F ( i , j , k ) ( x ) = x , if x [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] , a ( i , j , 1 , 1 ) k , if x [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 j 2 i + 3 1 2 i + 3 ] , a ( i , j , 1 , 1 ) k h a ( i , j , 1 , 2 ) h , if x [ 2 + 3 j 2 i + 3 1 2 h + i + 2 , 2 + 3 j 2 i + 3 1 2 h + i + 3 ] , a ( i , j , 1 , 2 ) k , if x [ 2 + 3 j 2 i + 3 1 2 k + i + 2 , 2 + 3 j 2 i + 3 ] , x , if x [ 2 + 3 j 2 i + 3 , 1 ] .
G ( i , j , k ) ( x ) = x , if x [ 0 , 2 + 3 ( j 1 ) 2 i + 3 ] , b ( i , j , 1 , 1 ) k , if x [ 2 + 3 ( j 1 ) 2 i + 3 , 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + k + 2 ] , b ( i , j , 1 , 2 ) h b ( i , j , 1 , 1 ) k h , if x [ 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + k h + 3 , 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + k h + 2 ] , b ( i , j , 1 , 2 ) k , if x [ 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + 3 , 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + 2 ] , x , if x [ 2 + 3 ( j 1 ) 2 i + 3 + 1 2 i + 2 , 1 ] .
where
a ( i , j , 1 , 1 ) = 1 2 x + 2 + 3 ( j 1 ) 2 i + 4 , a ( i , j , 1 , 2 ) = 2 x 2 + 3 j 2 i + 3 , b ( i , j , 1 , 1 ) = 2 x 2 + 3 ( j 1 ) 2 i + 3 , b ( i , j , 1 , 2 ) = 1 2 x + 2 + 3 j 2 i + 4 .
Thus, for i , j and k fixed, it holds that G ( i , j , k ) m = ( F ( i , j , k ) m ) 1 . For
f = F ( i , 1 , k ) α 1 , 1 + G ( i , 1 , k ) α 1 , 2 + F ( i , 2 , k ) α 2 , 1 + G ( i , 2 , k ) α 2 , 2 + + F ( i , 2 i + 1 , k ) α 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) α 2 i + 1 , 2
g = F ( i , 1 , k ) β 1 , 1 + G ( i , 1 , k ) β 1 , 2 + F ( i , 2 , k ) β 2 , 1 + G ( i , 2 , k ) β 2 , 2 + + F ( i , 2 i + 1 , k ) β 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) β 2 i + 1 , 2 , it holds that f g = F ( i , 1 , k ) α 1 , 1 + β 1 , 1 + G ( i , 1 , k ) α 1 , 2 + β 1 , 2 + F ( i , 2 , k ) α 2 , 1 + β 2 , 1 + G ( i , 2 , k ) α 2 , 2 + β 2 , 2 + + F ( i , 2 i + 1 , k ) α 2 i + 1 , 1 + β 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) α 2 i + 1 , 2 + β 2 i + 1 , 2 .
Thus, f g F . Therefore, H ( i , j , k ) is a subgroup of Thompson’s group. We are done. □
The following Theorem 3 proves that if the subgroup H ( i , j , k ) is endowed with the sum defined for messages M ( i , j , k ) , then it is a brace. Note that, if f , g H ( i , j , k ) , then
f = F ( i , 1 , k ) α 1 , 1 + G ( i , 1 , k ) α 1 , 2 + F ( i , 2 , k ) α 2 , 1 + G ( i , 2 , k ) α 2 , 2 + + F ( i , 2 i + 1 , k ) α 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) α 2 i + 1 , 2
g = F ( i , 1 , k ) β 1 , 1 + G ( i , 1 , k ) β 1 , 2 + F ( i , 2 , k ) β 2 , 1 + G ( i , 2 , k ) β 2 , 2 + + F ( i , 2 i + 1 , k ) β 2 i + 1 , 1 + G ( i , 2 i + 1 , k ) β 2 i + 1 , 2 , and
f + g = G ( i , 2 i + 1 , k ) β 2 i + 1 , 2 F ( i , 2 i + 1 , k ) β 2 i + 1 , 1 G ( i , 2 , k ) β 2 , 2 F ( i , 2 , k ) β 2 , 1 G ( i , 1 , k ) β 1 , 2 F ( i , 1 , k ) β 1 , 1 G ( i , 2 i + 1 , k ) α 2 i + 1 , 2 F ( i , 2 i + 1 , k ) α 2 i + 1 , 1 G ( i , 2 , k ) α 2 , 2 F ( i , 2 , k ) α 2 , 1 G ( i , 1 , k ) α 1 , 2 F ( i , 1 , k ) α 1 , 1 H ( i , j , k ) .
Theorem 3.
For any i , k 1 fixed and 1 j 2 i + 1 , it holds that ( H ( i , j , k ) , , + ) is a left brace.
Proof. 
Lemma 3 proves that ( H ( i , j , k ) , ) is a group. In particular, f + i d [ 0 , 1 ] = f , for any f H ( i , j , k ) , i.e., i d [ 0 , 1 ] = 0 . f + ( g + h ) = ( f + g ) + h , for any f , g , h H ( i , j , k ) .
For j j , let D ( i , ( j , j ) , k ) F , D ( i , ( j , j ) , k ) G , and D ( i , ( j , j ) , k ) F G be subsets of [ 0 , 1 ] such that
D ( i , ( j , j ) , k ) F = { x [ 0 , 1 ] F ( i , j , k ) ( x ) x } { x [ 0 , 1 ] F ( i , j , k ) ( x ) x } , D ( i , ( j , j ) , k ) G = { x [ 0 , 1 ] G ( i , j , k ) ( x ) x } { x [ 0 , 1 ] G ( i , j , k ) ( x ) x } , D ( i , ( j , j ) , k ) F G = { x [ 0 , 1 ] F ( i , j , k ) ( x ) x } { x [ 0 , 1 ] G ( i , j , k ) ( x ) x } .
Since D ( i , ( j , j ) , k ) F = D ( i , ( j , j ) , k ) G = D ( i , ( j , j ) , k ) F G = , it holds that
F ( i , j , k ) F ( i , j , k ) = F ( i , j , k ) F ( i , j , k ) , G ( i , j , k ) G ( i , j , k ) = G ( i , j , k ) G ( i , j , k ) , F ( i , j , k ) G ( i , j , k ) = G ( i , j , k ) F ( i , j , k ) , F ( i , j , k ) G ( i , j , k ) = i d [ 0 , 1 ] , G ( i , j , k ) F ( i , j , k ) = i d [ 0 , 1 ] .
Thus, for any f , g H ( i , j , k ) , f + g = g + f . Moreover,
f ( g + h ) + f = f f h g , f g + f h = f h f g = f f h g .
We are done. □
The following elements of Thompson’s group F are examples of generators of the subgroup H ( 1 , j , 1 ) .
F ( 1 , 1 , 1 ) ( x ) = x , if x [ 0 , 1 8 ] , 1 2 x + 1 16 , if x [ 1 8 , 1 4 ] , 2 x 5 16 , if x [ 1 4 , 5 16 ] , x , if x [ 5 16 , 1 ] .
F ( 1 , 2 , 1 ) ( x ) = x , if x [ 0 , 5 16 ] , 1 2 x + 5 32 , if x [ 5 16 , 7 16 ] , 2 x 1 2 , if x [ 7 16 , 1 2 ] , x , if x [ 1 2 , 1 ] .
F ( 1 , 3 , 1 ) ( x ) = x , if x [ 0 , 1 2 ] , 1 2 x + 1 4 , if x [ 1 2 , 5 8 ] , 2 x 11 16 , if x [ 5 8 , 11 16 ] , x , if x [ 11 16 , 1 ] .
F ( 1 , 4 , 1 ) ( x ) = x , if x [ 0 , 11 16 ] , 1 2 x + 11 32 , if x [ 11 16 , 13 16 ] , 2 x 7 8 , if x [ 13 16 , 7 8 ] , x , if x [ 7 8 , 1 ] .
G ( 1 , 1 , 1 ) ( x ) = x , if x [ 0 , 1 8 ] , 2 x 1 8 , if x [ 1 8 , 3 16 ] , 1 2 x + 5 32 , if x [ 3 16 , 1 4 ] , x , if x [ 1 4 , 1 ] .
G ( 1 , 2 , 1 ) ( x ) = x , if x [ 0 , 5 16 ] , 2 x 5 16 , if x [ 5 16 , 3 8 ] , 1 2 x + 1 4 , if x [ 3 8 , 7 16 ] , x , if x [ 7 16 , 1 ] .
G ( 1 , 3 , 1 ) ( x ) = x , if x [ 0 , 1 2 ] , 2 x 1 2 , if x [ 1 2 , 9 16 ] , 1 2 x + 11 32 , if x [ 9 16 , 5 8 ] , x , if x [ 5 8 , 1 ] .
G ( 1 , 4 , 1 ) ( x ) = x , if x [ 0 , 11 16 ] , 2 x 11 16 , if x [ 11 16 , 3 4 ] , 1 2 x + 7 16 , if x [ 3 4 , 13 16 ] , x , if x [ 13 16 , 1 ] .

4. Concluding Remarks

We defined Brauer configurations of type F ( i , j , k ) , which induce reduced and indecomposable Brauer configuration algebras. Specializations of the corresponding Brauer messages give rise to braces associated with Thompson’s group F. Such braces allow building non-degenerate involutive set-theoretical solutions of the YBE.

Future Work

The following are interesting tasks to carry out in the future:
  • To determine braces of type H ( i , j , k ) associated with Thompson’s groups of type T and V.
  • To determine braces based on the Cayley graph of Thompson’s group, F , T , and V.
  • To give applications of the obtained results in graph energy theory, cryptography, and coding theory.

Author Contributions

Investigation, A.M.C., A.B.-B. and I.D.M.G.; writing—review and editing, A.M.C., A.B.-B. and I.D.M.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Centro De Excelencia En Computación Científica CoE-SciCo, Universidad Nacional de Colombia.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
BCABrauer configuration algebra
dim F Λ M Dimension of a Brauer configuration algebra
dim F Z ( Λ M ) Dimension of the center of a Brauer configuration algebra
F Field
M 0 Set of vertices of a Brauer configuration M
M ( P ) Brauer message of a Brauer configuration P
t n nth triangular number
v a l ( α ) Valency of a vertex α
ν α v a l ( α ) μ ( α )
w ( M i , f i ) The word associated with a polygon ( M i , f i )
YBEYang–Baxter equation

References

  1. Yang, C.N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 1967, 19, 1312–1315. [Google Scholar] [CrossRef]
  2. Baxter, R.J. Partition function for the eight-vertex lattice model. Ann. Phys. 1972, 70, 193–228. [Google Scholar] [CrossRef]
  3. Caudrelier, V.; Crampé, N. Exact results for the one-dimensional many-body problem with contact interaction: Including a tunable impurity. Rev. Math. Phys. 2007, 19, 349–370. [Google Scholar] [CrossRef]
  4. Cedó, F.; Jespers, E.; Oniński, J. Braces and the Yang–Baxter equation. Commun. Math. Phys. 2014, 327, 101–116. [Google Scholar] [CrossRef]
  5. Nichita, F.F. Introduction to the Yang–Baxter equation with open problems. Axioms 2012, 1, 33–37. [Google Scholar] [CrossRef]
  6. Nichita, F.F. Yang–Baxter equations, computational methods and applications. Axioms 2015, 4, 423–435. [Google Scholar] [CrossRef]
  7. Massuyeau, G.; Nichita, F.F. Yang–Baxter operators arising from algebra structures and the Alexander polynomial of knots. Comm. Algebra 2005, 33, 2375–2385. [Google Scholar] [CrossRef]
  8. Kauffman, L.H.; Lomonaco, S.J. Braiding operators are universal quantum gates. New J. Phys. 2004, 6, 134. [Google Scholar] [CrossRef]
  9. Turaev, V. The Yang–Baxter equation and invariants of links. Invent. Math. 1988, 92, 527–533. [Google Scholar] [CrossRef]
  10. Rump, W. Modules over braces. Algebra Discret. Math. 2006, 2, 127–137. [Google Scholar]
  11. Rump, W. Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra 2007, 307, 153–170. [Google Scholar] [CrossRef]
  12. Ballester-Bolinches, A.; Esteban-Romero, R.; Fuster-Corral, N.; Meng, H. The structure group and the permutation group of a set-theoretical solution of the quantum Yang–Baxter equation. Mediterr. J. Math. 2021, 18, 1347–1364. [Google Scholar] [CrossRef]
  13. Green, E.L.; Schroll, S. Brauer configuration algebras: A generalization of Brauer graph algebras. Bull. Sci. Math. 2017, 121, 539–572. [Google Scholar] [CrossRef]
  14. Cañadas, A.M.; Gaviria, I.D.M.; Vega, J.D.C. Relationships between the Chicken McNugget Problem, Mutations of Brauer Configuration Algebras and the Advanced Encryption Standard. Mathematics 2021, 9, 1937. [Google Scholar] [CrossRef]
  15. Moreno Cañadas, A.; Rios, G.B.; Serna, R.J. Snake graphs arising from groves with an application in coding theory. Computation 2022, 10, 124. [Google Scholar] [CrossRef]
  16. Agudelo, N.; Cañadas, A.M.; Espinosa, P.F.F. Brauer configuration algebras defined by snake graphs and Kronecker modules. Electron. Res. Arch. 2022, 30, 3087–3110. [Google Scholar]
  17. Espinosa, P.F.F. Categorification of Some Integer Sequences and Its Applications. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2021. [Google Scholar]
  18. Drinfeld, V.G. On unsolved problems in quantum group theory. Lect. Notes Math. 1992, 1510, 1–8. [Google Scholar]
  19. Etingof, P.; Schedler, T.; Soloviev, A. Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 1999, 100, 169–209. [Google Scholar] [CrossRef]
  20. Gateva-Ivanova, T.; Van den Bergh, M. Semigroups of I-type. J. Algebra 1998, 308, 97–112. [Google Scholar] [CrossRef]
  21. Guarnieri, L.; Vendramin, L. Skew braces and the Yang–Baxter equation. Math. Comput. 2017, 85, 2519–2534. [Google Scholar] [CrossRef]
  22. Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
  23. da Fontoura Costa, L. Multisets. arXiv 2021, arXiv:2110.12902. [Google Scholar]
  24. Schroll, S. Brauer Graph Algebras. In Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses; Assem, I., Trepode, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 177–223. [Google Scholar]
  25. Sierra, A. The dimension of the center of a Brauer configuration algebra. J. Algebra 2018, 510, 289–318. [Google Scholar] [CrossRef]
  26. Belk, J.M. Thompson’s group F. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2004. [Google Scholar]
  27. Burillo, J.; Cleary, S.; Stein, M.; Taback, J. Combinatorial and Metric Properties of Thompson’s Group T. Trans. Amer. Math. Soc. 2009, 361, 631–652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.