Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,546)

Search Parameters:
Keywords = wave spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4299 KB  
Article
Unique Dielectric Protection for Microwave and Millimeter-Wave Antenna Applications
by Hafiz Usman Tahseen, Luca Francioso, Syed Shah Irfan Hussain and Luca Catarinucci
Telecom 2025, 6(4), 74; https://doi.org/10.3390/telecom6040074 (registering DOI) - 4 Oct 2025
Abstract
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design [...] Read more.
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design of dielectric sandwich-layered cover that can effectively protect antennas operating in a large frequency band from 1 GHz to 28 GHz, including millimeter-wave and microwave ranges, with minimum insertion loss for various incident angles. The proposed single dielectric cover may give sufficient protection for an entire tower or chimney housing multiple antennas, ranging from first-generation to fifth-generation microwave base-station antennas, as well as other wireless/broadcast antennas in millimeter or lower frequency ranges. In the first step, optimum dielectric constant and thickness of the dielectric cover are calculated numerically through a MATLAB (R2015a) code. In the second step, a floquet port analysis is performed to observe the insertion loss through the transmission coefficient against various frequency band-spectrums in microwave and millimeter-wave ranges for validation of the proposed synthesis. The ANSYS 18.2 HFSS tool is used for the purpose. In the third step, fabrication of the dielectric-layered structure is completed with the optimum design parameters. In the final step, the dielectric package is tested under various fabricated antennas in different frequency ranges. Full article
Show Figures

Figure 1

11 pages, 823 KB  
Article
Closed-Form Solution Lagrange Multipliers in Worst-Case Performance Optimization Beamforming
by Tengda Pei and Bingnan Pei
Signals 2025, 6(4), 55; https://doi.org/10.3390/signals6040055 (registering DOI) - 4 Oct 2025
Abstract
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. [...] Read more.
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. The method was first developed for a single plane wave scenario and then generalized to multiplane wave cases with an autocorrelation matrix rank of N. Simulations demonstrate that the proposed Lagrange multiplier formula exhibits a performance comparable to that of the second-order cone programming (SOCP) method in terms of signal-to-interference-plus-noise ratio (SINR) and direction-of-arrival (DOA) estimation accuracy, while offering a significant reduction in computational complexity. The proposed method requires three orders of magnitude less computation time than the SOCP and has a computational efficiency similar to that of the diagonal loading (DL) technique, outperforming DL in SINR and DOA estimations. Fourier amplitude spectrum analysis revealed that the beamforming filters obtained using the proposed method and the SOCP shared frequency distribution structures similar to the ideal optimal beamformer (MVDR), whereas the DL method exhibited distinct characteristics. The proposed analytical expressions for the Lagrange multipliers provide a valuable tool for implementing robust and real-time adaptive beamforming for practical applications. Full article
Show Figures

Figure 1

14 pages, 1122 KB  
Article
The Accessible Vascular Indicators for Mild Cognitive Impairment Detection: The Predictive Value of the Ankle-Brachial Index
by Agnieszka Gostyńska, Agata Puszcz, Nadia Kruszyńska, Marzena Bielas, Lucyna Woźnicka-Leśkiewicz and Anna Posadzy-Małaczyńska
J. Clin. Med. 2025, 14(19), 6991; https://doi.org/10.3390/jcm14196991 - 2 Oct 2025
Abstract
Objectives: Neurocognitive disorders (NCDs) refer to a broad spectrum of conditions characterized by declining cognitive functions, such as memory, attention, language, and executive abilities. It is estimated that up to half of patients affected by NCDs remain undiagnosed or are diagnosed at an [...] Read more.
Objectives: Neurocognitive disorders (NCDs) refer to a broad spectrum of conditions characterized by declining cognitive functions, such as memory, attention, language, and executive abilities. It is estimated that up to half of patients affected by NCDs remain undiagnosed or are diagnosed at an advanced stage of the disease. This study aimed to analyze the utility of subclinical organ damage markers, which could be used in primary care for the detection and prevention of NCD. Methods: The study participants (n = 137) completed neuropsychological tests (Addenbrooke’s Cognitive Examination/ACE and Mini-Mental State Examination/MMSE), a sociodemographic survey, an interview on past illnesses, and had their ankle-brachial index (ABI) and pulse wave velocity (PWV) values measured. Results: Based on the MMSE test, 26 participants (19.0%) were diagnosed with mild cognitive impairment (MCI) and 8 participants (5.8%) with NCDs. The study found that lower ABI values were associated with worse cognitive performance, suggesting that the ABI may be a useful tool for identifying individuals at increased risk of NCDs, while PWV cannot be used as a predictor for this group of diseases. Conclusions: Lower ABI values were associated with reduced cognitive performance, whereas PWV showed no significant relationship. The secondary findings suggest that physical activity, regular computer use, and better mental well-being were linked to improved cognitive outcomes. A low ABI value could potentially serve as a predictor of cognitive disorders, and as a diagnostic tool that is easily accessible and quick, it may improve diagnostics and the overall health of primary care patients. Health education regarding modifiable risk factors for dementia is also of crucial importance. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

25 pages, 4931 KB  
Article
Optical Multi-Peakon Dynamics in the Fractional Cubic–Quintic Nonlinear Pulse Propagation Model Using a Novel Integral Approach
by Ejaz Hussain, Aljethi Reem Abdullah, Khizar Farooq and Usman Younas
Fractal Fract. 2025, 9(10), 631; https://doi.org/10.3390/fractalfract9100631 - 28 Sep 2025
Abstract
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, [...] Read more.
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, and self-focusing, arising from the balance between cubic and quintic nonlinearities. By employing the Multivariate Generalized Exponential Rational Integral Function (MGERIF) method, we derive an extensive catalog of analytic solutions, multi-peakon structures, lump solitons, kinks, and bright and dark solitary waves, while periodic and singular solutions emerge as special cases. These outcomes are systematically constructed within a single framework and visualized through 2D, 3D, and contour plots under both anomalous and normal dispersion regimes. The analysis also addresses modulation instability (MI), interpreted as a sideband amplification of continuous-wave backgrounds that generates pulse trains and breather-type structures. Our results demonstrate that cubic–quintic contributions substantially affect MI gain spectrum, broadening instability bands and permitting MI beyond the anomalous-dispersion regime. These findings directly connect the obtained solution classes to experimentally observed routes for solitary wave shaping, pulse propagation, and instability and instability-driven waveform formation in optical communication devices, photonic platforms, and laser technologies. Full article
Show Figures

Figure 1

22 pages, 10283 KB  
Article
Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry
by Zhengwen Xu, Shouxian Zhu, Wenjing Zhang, Yanyan Kang and Xiangbai Wu
Remote Sens. 2025, 17(19), 3284; https://doi.org/10.3390/rs17193284 - 24 Sep 2025
Viewed by 50
Abstract
The extraction of ocean wave wavelengths from optical imagery via Fast Fourier Transform (FFT) exhibits significant potential for Wave-Derived Bathymetry (WDB). However, in practical applications, this method frequently produces anomalously large wavelength estimates. To date, there has been insufficient exploration into the mechanisms [...] Read more.
The extraction of ocean wave wavelengths from optical imagery via Fast Fourier Transform (FFT) exhibits significant potential for Wave-Derived Bathymetry (WDB). However, in practical applications, this method frequently produces anomalously large wavelength estimates. To date, there has been insufficient exploration into the mechanisms underlying image spectral leakage to low wavenumbers and its suppression strategies. This study investigates three plausible mechanisms contributing to spectral leakage in optical images and proposes a subimage-based preprocessing framework: prior to executing two-dimensional FFT, the remote sensing subimages employed for wavelength inversion undergo three sequential steps: (1) truncation of distorted pixel values using a Gaussian mixture model; (2) application of a polynomial detrending surface; (3) incorporation of a two-dimensional Hann window. Subsequently, the dominant wavenumber peak is localized in the power spectrum and converted to wavelength values. Water depth is then inverted using the linear dispersion equation, combined with wave periods derived from ERA5. Taking 2 m-resolution WorldView-2 imagery of Sanya Bay, China as a case study, 1024 m subimages are utilized, with validation conducted against chart-sounding data. Results demonstrate that the proportion of subimages with anomalous wavelengths is reduced from 18.9% to 3.3% (in contrast to 14.0%, 7.8%, and 16.6% when the three preprocessing steps are applied individually). Within the 0–20 m depth range, the water depth retrieval accuracy achieves a Mean Absolute Error (MAE) of 1.79 m; for the 20–40 m range, the MAE is 6.38 m. A sensitivity analysis of subimage sizes (512/1024/2048 m) reveals that the 1024 m subimage offers an optimal balance between accuracy and coverage. However, residual anomalous wavelengths persist in near-shore subimages, and errors still increase with increasing water depth. This method is both concise and effective, rendering it suitable for application in shallow-water WDB scenarios. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 3772 KB  
Article
Coupled Vibration Response Analysis of Tension Leg Platform Tendon Under Irregular Ocean Wave Action
by Qiangqiang Wu, Yinguang Du, Xiaofeng Luo, Tao Sun and Heng Lin
J. Mar. Sci. Eng. 2025, 13(10), 1836; https://doi.org/10.3390/jmse13101836 - 23 Sep 2025
Viewed by 118
Abstract
To analyze the dynamic response of tension leg platform (TLP) tendons under irregular ocean wave action, the governing equations of coupled vibration between the platform and tendon under irregular wave action are established based on Hamilton’s principle and the Kirchhoff hypothesis. Using the [...] Read more.
To analyze the dynamic response of tension leg platform (TLP) tendons under irregular ocean wave action, the governing equations of coupled vibration between the platform and tendon under irregular wave action are established based on Hamilton’s principle and the Kirchhoff hypothesis. Using the spectrum representation–random function method, the power spectral density function of the irregular wave load is derived, and the lateral wave forces at different tendon locations are calculated. The coupled lateral and axial responses of the tendon system are obtained through the fourth-order Runge–Kutta method. Considering the parametric vibrations of both the platform and tendon, the extreme lateral deflection of the tendon is employed as the control index to derive the probability density curves of the tendon deflection under irregular wave load. The results show that the amplitude of the wave load increases gradually along the height of the tendon, with a faster growth rate at locations closer to the water surface. The tendon’s lateral deflection response changes more drastically due to coupled parametric vibration of the platform. Based on 628 complete samples of irregular wave loads, the probability density curve and cumulative distribution curve of the extreme lateral deflection of the tendon under irregular wave loads are obtained. Under typical sea state conditions generated from the P-M wave spectrum, the reliability of the tendon under irregular wave load increases with the initial tension force. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

14 pages, 356 KB  
Article
The Charmed Meson Spectrum Using One-Loop Corrections to the One-Gluon Exchange Potential
by André Capelo-Astudillo, Telmo Aguilar, Marlon Conde-Correa, Álvaro Duenas-Vidal, Pablo G. Ortega and Jorge Segovia
Symmetry 2025, 17(9), 1575; https://doi.org/10.3390/sym17091575 - 20 Sep 2025
Viewed by 158
Abstract
We investigate the charmed meson spectrum using a constituent quark model (CQM) with one-loop corrections applied to the one-gluon exchange (OGE) potential. The study aims to understand if the modified version of our CQM sufficiently account for the charmed meson spectrum observed experimentally, [...] Read more.
We investigate the charmed meson spectrum using a constituent quark model (CQM) with one-loop corrections applied to the one-gluon exchange (OGE) potential. The study aims to understand if the modified version of our CQM sufficiently account for the charmed meson spectrum observed experimentally, without invoking exotic quark and gluon configurations such as hybrid mesons or tetraquarks. Within this model, charmed mesons’ masses are computed, comparing theoretical predictions to experimental data. The results, within uncertainties, suggest that our theoretical framework generally reproduces mass splittings and level ordering observed for charmed mesons. Particularly, large discrepancies between theory and experiment found in P-wave states are, at least, significantly ameliorated by incorporating higher-order interaction terms. Therefore, the findings emphasize that while the traditional quark model is limited in fully describing charmed mesons, enhanced potential terms may bridge the gap with experimental observations. The study contributes a framework for predicting excited charmed meson states for future experimental validation. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

13 pages, 909 KB  
Article
An Innovated Vibration Equation for Longitudinal Plate by Using the Symmetric and Asymmetric Spectral Decomposition
by Jun Yin, Chuanping Zhou, Changyong Chu, Huipeng Chen and Fan Yang
Symmetry 2025, 17(9), 1563; https://doi.org/10.3390/sym17091563 - 18 Sep 2025
Viewed by 154
Abstract
Thick wall structures involving longitudinal wave are typically utilized in aerospace engineering, nuclear power engineering, precision transmission device design, and pressure vessels design. Consequently, developing sophisticated dynamic models for thick plates is of paramount importance. However, the commonly used longitudinal vibration equation is [...] Read more.
Thick wall structures involving longitudinal wave are typically utilized in aerospace engineering, nuclear power engineering, precision transmission device design, and pressure vessels design. Consequently, developing sophisticated dynamic models for thick plates is of paramount importance. However, the commonly used longitudinal vibration equation is of the second order, which is regarded as a plane stress problem. Its dispersion curve is a straight line, which cannot describe the actual dispersion in the plate. In this paper, the spectral analysis of Navier equation describing three-dimensional elasto-dynamics is carried out by using the symmetric and asymmetric spectral decomposition theory of differential operators and introducing the concept of virtual differential operators. The infinite product operator series describing longitudinal vibration are truncated into fourth order. The governing equation of longitudinal vibration consists of a fourth-order wave equation and a second-order wave equation. Owing to the fact that no a priori assumptions were introduced during the derivation of its dynamic equations, the proposed plate dynamic model boasts higher precision and is applicable across a broader frequency spectrum and for plates with greater thicknesses. This is a breakthrough in the longitudinal vibration equation of plates. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

22 pages, 5739 KB  
Article
Dynamical Analysis and Solitary Wave Solutions of the Zhanbota-IIA Equation with Computational Approach
by Beenish, Maria Samreen and Manuel De la Sen
Math. Comput. Appl. 2025, 30(5), 100; https://doi.org/10.3390/mca30050100 - 15 Sep 2025
Viewed by 216
Abstract
This study conducts an in-depth analysis of the dynamical characteristics and solitary wave solutions of the integrable Zhanbota-IIA equation through the lens of planar dynamic system theory. This research applies Lie symmetry to convert nonlinear partial differential equations into ordinary differential equations, enabling [...] Read more.
This study conducts an in-depth analysis of the dynamical characteristics and solitary wave solutions of the integrable Zhanbota-IIA equation through the lens of planar dynamic system theory. This research applies Lie symmetry to convert nonlinear partial differential equations into ordinary differential equations, enabling the investigation of bifurcation, phase portraits, and dynamic behaviors within the framework of chaos theory. A variety of analytical instruments, such as chaotic attractors, return maps, recurrence plots, Lyapunov exponents, Poincaré maps, three-dimensional phase portraits, time analysis, and two-dimensional phase portraits, are utilized to scrutinize both perturbed and unperturbed systems. Furthermore, the study examines the power frequency response and the system’s sensitivity to temporal delays. A novel classification framework, predicated on Lyapunov exponents, systematically categorizes the system’s behavior across a spectrum of parameters and initial conditions, thereby elucidating aspects of multistability and sensitivity. The perturbed system exhibits chaotic and quasi-periodic dynamics. The research employs the maximum Lyapunov exponent portrait as a tool for assessing system stability and derives solitary wave solutions accompanied by illustrative visualization diagrams. The methodology presented herein possesses significant implications for applications in optical fibers and various other engineering disciplines. Full article
(This article belongs to the Section Natural Sciences)
Show Figures

Figure 1

25 pages, 5278 KB  
Article
Developing a Quality Flag for SAR Ocean Wave Spectrum Partitioning with Machine Learning
by Amine Benchaabane, Romain Husson, Muriel Pinheiro and Guillaume Hajduch
Remote Sens. 2025, 17(18), 3191; https://doi.org/10.3390/rs17183191 - 15 Sep 2025
Viewed by 273
Abstract
Synthetic Aperture Radar (SAR) is one of the few instruments capable of providing high-resolution global two-dimensional (2D) measurements of ocean waves. Since 2014 and then 2016, the Sentinel-1A/B satellites, whenever operating in a specific wave mode (WV), have been providing ocean swell spectrum [...] Read more.
Synthetic Aperture Radar (SAR) is one of the few instruments capable of providing high-resolution global two-dimensional (2D) measurements of ocean waves. Since 2014 and then 2016, the Sentinel-1A/B satellites, whenever operating in a specific wave mode (WV), have been providing ocean swell spectrum data as Level-2 (L2) OCeaN products (OCN), derived through a quasi-linear inversion process. This WV acquires small SAR images of 20 × 20 km footprints alternating between two sub-beams, WV1 and WV2, with incidence angles of approximately 23° and 36°, respectively, to capture ocean surface dynamics. The SAR imaging process is influenced by various modulations, including hydrodynamic, tilt, and velocity bunching. While hydrodynamic and tilt modulations can be approximated as linear processes, velocity bunching introduces significant distortion due to the satellite’s relative motion with respect to the ocean surface and leads to constructive but also destructive effects on the wave imaging process. Due to the associated azimuth cut-off, the quasi-linear inversion primarily detects ocean swells with, on average, wavelengths longer than 200 m in the SAR azimuth direction, limiting the resolution of smaller-scale wave features in azimuth but reaching 10 m resolution along range. The 2D spectral partitioning technique used in the Sentinel-1 WV OCN product separates different swell systems, known as partitions, based on their frequency, directional, and spectral characteristics. The accuracy of these partitions can be affected by several factors, including non-linear effects, large-scale surface features, and the relative direction of the swell peak to the satellite’s flight path. To address these challenges, this study proposes a novel quality control framework using a machine learning (ML) approach to develop a quality flag (QF) parameter associated with each swell partition provided in the OCN products. By pairing collocated data from Sentinel-1 (S1) and WaveWatch III (WW3) partitions, the QF parameter assigns each SAR-derived swell partition one of five quality levels: “very good,” “good,” “medium,” “low,” or “poor”. This ML-based method enhances the accuracy of wave partitions, especially in cases where non-linear effects or large-scale oceanic features distort the data. The proposed algorithm provides a robust tool for filtering out problematic partitions, improving the overall quality of ocean wave measurements obtained from SAR. Moreover, the variability in the accuracy of swell partitions, depending on the swell direction relative to the satellite’s flight heading, is effectively addressed, enabling more reliable data for oceanographic studies. This work contributes to a better understanding of ocean swell dynamics derived from SAR observations and supports the numerical swell modeling community by aiding in the refinement of models and their integration into operational systems, thereby advancing both theoretical and practical aspects of ocean wave forecasting. Full article
(This article belongs to the Special Issue Calibration and Validation of SAR Data and Derived Products)
Show Figures

Figure 1

18 pages, 40307 KB  
Article
A Reconfigurable Metasurface for Linear-to-Circular Polarization Conversion Using Mechanical Rotation
by Gregorio J. Molina-Cuberos, Ángel J. García-Collado, Ismael Barba and José Margineda
Electronics 2025, 14(18), 3639; https://doi.org/10.3390/electronics14183639 - 14 Sep 2025
Viewed by 400
Abstract
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a [...] Read more.
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a low-permittivity substrate. Operating in transmission mode, the linear-to-circular (LTC) converter does not require any active electronic components. The geometry is optimized by using full-wave simulations to maximize the conversion up to 26% relative bandwidth with polarization conversion efficiency up to 65%, and insertion loss below 1.3 dB. Power balance analysis confirms low-loss, impedance-matched behavior. A scaled prototype fabricated from AWG-25 steel wires validates the model: experimental measurements closely reproduce the simulated bandwidth and demonstrate robust handedness switching. Because the resonance frequency depends primarily on resonator length and unit-cell pitch and thickness, the design can be retuned across the microwave spectrum through straightforward geometrical scaling. These results suggest that mechanical rotation could provide a simple and reliable alternative to electronic tuning in reconfigurable circular polarizers. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 8241 KB  
Article
Low-Loss 795 nm Electro-Optic Modulators
by Xutong Lu, Xiyao Song, Ruixiang Song, Jiaqi Cui, Shuaihong Qi, Zhangyuan Chen and Yanping Li
Photonics 2025, 12(9), 896; https://doi.org/10.3390/photonics12090896 - 6 Sep 2025
Viewed by 623
Abstract
Electro-optic modulators in the near-infrared spectrum are finding applications in atomic clocks, quantum sensing, quantum information processing, and high-precision measurement. We developed thin-film lithium niobate electro-optic modulators operating at 795 nm for modulation around the D1 line of 87Rb with satisfactory [...] Read more.
Electro-optic modulators in the near-infrared spectrum are finding applications in atomic clocks, quantum sensing, quantum information processing, and high-precision measurement. We developed thin-film lithium niobate electro-optic modulators operating at 795 nm for modulation around the D1 line of 87Rb with satisfactory overall performance. Specifically, we made a systematic improvement to reduce the insertion loss, including widening the modulation waveguides, thickening the overcladding, polishing and coating the facets. The fabricated device possesses a low insertion loss of 7.6 dB, an extinction ratio exceeding 30 dB, a 3 dB modulation bandwidth of ~22 GHz, a half-wave voltage-length product of ~1.8 Vcm, and strong adaptability for packaging. Full article
Show Figures

Figure 1

13 pages, 602 KB  
Article
Prophylactic Antibiotics in Vertebroplasty and Kyphoplasty: A Nationwide Analysis of Infection Rates and Antibiotic Use in South Korea
by Youngjin Kim, Young-Hoon Kim, Sukil Kim, Jun-Seok Lee, Sang-Il Kim, Joonghyun Ahn, So-Young Han and Hyung-Youl Park
Antibiotics 2025, 14(9), 901; https://doi.org/10.3390/antibiotics14090901 - 5 Sep 2025
Viewed by 472
Abstract
Background/Objectives: Vertebroplasty (VP) and kyphoplasty (KP) are widely performed minimally invasive procedures for osteoporotic vertebral compression fractures and vertebral metastases. Although generally safe, postoperative surgical site infections (SSIs) can lead to severe complications. The true incidence of SSIs and optimal prophylactic antibiotic [...] Read more.
Background/Objectives: Vertebroplasty (VP) and kyphoplasty (KP) are widely performed minimally invasive procedures for osteoporotic vertebral compression fractures and vertebral metastases. Although generally safe, postoperative surgical site infections (SSIs) can lead to severe complications. The true incidence of SSIs and optimal prophylactic antibiotic strategies remains unclear. This study evaluated SSI incidence and the impact of antibiotic timing and type using a nationwide quality assessment (QA) database in South Korea. Methods: We analyzed data from the 7th to 9th QA waves of the Health Insurance Review and Assessment (HIRA) Service, including 23,868 patients who underwent VP or KP. SSI incidence was compared across antibiotic timing groups (preoperative-only, postoperative-only, and combined) and antibiotic types. Multivariate logistic regression identified independent risk factors for SSIs. Results: SSI occurred in 47 patients (0.20% of 23,868 procedures). No infections were observed in the preoperative-only group, compared with 0.36% in the postoperative-only group and 0.19% in the pre- and postoperative group. The lowest incidence (0.16%) was seen with first- or second-generation cephalosporins. Multivariate analysis found no significant difference between the preoperative-only and the combined regimens, nor between first-/second-generation cephalosporins and broad-spectrum antibiotics. However, surgery at a tertiary hospital (aOR: 3.566) and malnutrition (aOR: 2.915) were independently associated with increased SSI risk. Conclusions: This nationwide study, the largest to date on VP and KP, demonstrated that SSIs are rare (0.2%). A single preoperative dose of first- or second-generation cephalosporins was as effective as combined or broader-spectrum regimens. Targeted preventive measures may be warranted for high-risk groups such as patients with malnutrition or those treated in tertiary hospitals. Full article
(This article belongs to the Special Issue Orthopedic Infections: Epidemiology and Antimicrobial Treatment)
Show Figures

Figure 1

13 pages, 1352 KB  
Entry
Urban Effects of Climate Change on Elderly Population and the Need for Implementing Urban Policies
by Letizia Cremonini and Teodoro Georgiadis
Encyclopedia 2025, 5(3), 140; https://doi.org/10.3390/encyclopedia5030140 - 5 Sep 2025
Viewed by 643
Definition
The intensified exposure to high temperature in urban areas, resulting from the combination of heat waves and the urban heat island (UHI) effect, necessitates a deeper understanding of the climate–health relationship. This knowledge directly influences the strategies employed by policy makers and urban [...] Read more.
The intensified exposure to high temperature in urban areas, resulting from the combination of heat waves and the urban heat island (UHI) effect, necessitates a deeper understanding of the climate–health relationship. This knowledge directly influences the strategies employed by policy makers and urban planners in their efforts to regenerate cities and protect their population. Nature-based solutions and the widely accepted 15 min city model, characterized by a polycentric structure, should drive the implementation of effective adaptation policies, especially given the persistent delay in mitigation efforts. However, it is less clear whether current or future policies are adequately structured to broadly address the complex forms of social vulnerability. A prime example of this complexity is the demographic shift observed since the mid-20th century, characterized by a relative increase in the elderly population, and a shrinking youth demographic. While extensive literature addresses the physiological impacts of heat wave on human health, evidence regarding the neuro-psychological and cognitive implications for elderly individuals, who frequently suffer from chronic diseases, remains less comprehensive and more fragmented. The purpose of this concise review is to emphasize that crucial findings on the climate–health relationship, particularly concerning the elderly, have often been developed within disciplinary silos. The lack of comprehensive interdisciplinary integration coupled with an incomplete understanding of the full spectrum of vulnerabilities (encompassing both physiological and cognitive) may lead to urban policies that are egalitarian in principle but fail to achieve true equity in practice. This review aims to bridge this gap by highlighting the need for a more integrated approach to urban policy and regeneration. Full article
(This article belongs to the Section Social Sciences)
Show Figures

Graphical abstract

17 pages, 3922 KB  
Article
Time–Frequency Domain Analysis of the Ground Vibration of an Elevated Railway and Study on the Elliptic Polarization Dispersion Characteristics of Rayleigh Waves
by Shijie Liu, Yulan Song, Zhengping Liu, Zhe Liu and Qingling Du
Computation 2025, 13(9), 215; https://doi.org/10.3390/computation13090215 - 4 Sep 2025
Viewed by 358
Abstract
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the [...] Read more.
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the subgrade and surrounding structures when trains operate on viaducts within the Loess Plateau region. However, research on mitigating these vibration effects remains relatively scarce. This study focused on the impacts of such vibrations on surrounding buildings and stratum structures and evaluated the effectiveness of a vibration isolation trench in mitigating these effects. Time frequency domain analysis of ground vibrations during train passage revealed that the characteristic frequency of the train-induced pulse excitation in the track structure had a pronounced peak in the spectrum curve. The introduction of a vibration isolation trench effectively blocked the propagation of vibration waves in the soil, reduced soil vibration, and significantly lowered the peak value in the spectrum. Numerical simulations were employed to analyze the elliptical polarization dispersion characteristics of surface wave propagation with the vibration isolation trench in place, confirming the effective damping performance of the trench. These findings could offer a valuable reference for high-speed railway vibration isolation and significantly advance the application of surface wave theory in high-speed railway technology. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

Back to TopTop