Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamura, T. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Sci. Rev. 2012, 114, 279–297. [Google Scholar] [CrossRef]
- Isla, M.F.; Moyano-Paz, D.; FitzGerald, D.M.; Simontacchi, L.; Veiga, G.D. Contrasting beach-ridge systems in different types of coastal settings. Earth Surf. Process. Landf. 2023, 48, 47–71. [Google Scholar] [CrossRef]
- Kindler, P. Coastal response to the Holocene transgression in the Bahamas: Episodic sedimentation versus continuous sea-level rise. Sediment. Geol. 1992, 80, 319–329. [Google Scholar] [CrossRef]
- Neumann, A.C.; Hearty, P.J. Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 1996, 24, 775–778. [Google Scholar] [CrossRef]
- Khan, N.S.; Ashe, E.; Horton, B.P.; Dutton, A.; Kopp, R.E.; Brocard, G.; Engelhart, S.E.; Hill, D.F.; Peltier, W.; Vane, C.H.; et al. Drivers of Holocene sea-level change in the Caribbean. Quat. Sci. Rev. 2017, 155, 13–36. [Google Scholar] [CrossRef]
- Savarese, M.; Curran, H.A. Origin of Late Holocene strandplains in the southern Exuma Islands, Bahamas: Progradation, ephemeral highstands, and storminess. In Proceedings of the 16″ Symposium on the Geology of the Bahamas and Other Carbonate Regions; Glumac, B., Savarese, M., Eds.; Gerace Research Centre: San Salvador, Bahamas, 2016; pp. 39–59. [Google Scholar]
- Cescon, A.L.; Cooper, J.A.G.; Jackson, D.W.T. Nature distribution of beach ridges on the islands of the Greater Caribbean. J. Mar. Sci. Eng. 2024, 12, 565. [Google Scholar] [CrossRef]
- Buynevich, I.V.; Savarese, M.; Curran, H.A.; Bitinas, A.; Glumac, B.; Pupienis, D.; Kopcznski, K.A.; Dobrotin, N.; Gnivecki, P.L.; Park Boush, L.E.; et al. Sand incursion into temperate (Lithuania) and tropical (the Bahamas) maritime vegetation: Georadar visualization of target-rich aeolian lithosomes. Estuar. Coast. Shelf Sci. 2017, 195, 69–75. [Google Scholar] [CrossRef]
- Shinn, E.A. Burrowing in Recent Lime Sediments of Florida and the Bahamas. J. Paleontol. 1968, 42, 879–894. [Google Scholar]
- Porter, S.C. High resolution paleoclimatic information from Chinese eolian sediments based on grayscale intensity profiles. Quat. Res. 2000, 53, 70–77. [Google Scholar] [CrossRef]
- Buynevich, I.V.; Davydov, O.V.; FitzGerald, D.M. Coastal inlet analysis by image color intensity variations: Implications for the barrier coast of Ukraine. J. Mar. Sci. Eng. 2025, 13, 72. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Baker, P.L. Response of ground-penetrating radar to bounding surfaces and lithofacies variations in sand barrier sequences. Explor. Geophys. 1991, 22, 19–22. [Google Scholar]
- Jol, H.M.; Bristow, C.S. GPR in sediments: Advice on data collection basic processing interpretation a good practice guide. In Ground Penetrating Radar in Sediments; Bristow, C.S., Jol, H.M., Eds.; Geological Society of London, Special Pub: London, UK, 2003; Volume 11, pp. 9–27. [Google Scholar]
- Dougherty, A.J. Prograded coastal barriers provide paleoenvironmental records of storms and sea level during late Quaternary highstands. J. Quat. Sci. 2018, 33, 501–517. [Google Scholar] [CrossRef]
- Hesp, P.A. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Pedersen, K.; Clemmensen, L.B. Unveiling past aeolian landscapes; a ground-penetrating radar survey of a Holocene coastal dunefield system, Thy, Denmark. Sediment. Geol. 2005, 177, 57–86. [Google Scholar] [CrossRef]
- Buynevich, I.V.; Savarese, M.; Kadurin, S.V.; Larchenkov, E.P.; Park Boush, L.E.; Curran, A.H.; Beal, I.A. Morphodynamics and geological legacy of berm scarps along non-tidal (Ukraine) and microtidal (the Bahamas) coasts. Geol. Geogr. Bull. Odesa Natl. Univ. Ukr. 2014, 19, 177–187. [Google Scholar]
- Tõnisson, H.; Suursaar, U.; Kont, A.; Muru, M.; Rivis, R.; Rosentau, A.; Tamura, T.; Vilumaa, K. Rhythmic patterns of coastal formations as signs of past climate fluctuations on uplifting coasts of Estonia, the Baltic Sea. J. Coast. Res. Spec. Issue 2018, 85, 611–615. [Google Scholar] [CrossRef]
- Tamura, T.; Cunningham, A.C.; Oliver, T.S.N. Two-dimensional chronostratigraphic modelling of OSL ages from recent beach-ridge deposits, SE Australia. Quat. Geochronol. 2019, 49, 39–44. [Google Scholar] [CrossRef]
- Suursaar, U.; Rosentau, A.; Hang, T.; Tõnisson, H.; Tamura, T.; Vaasma, T.; Vandel, E.; Vilumaa, K.; Sugita, S. Climatically induced cyclicity recorded in the morphology of uplifting Tihu coastal ridgeplain, Hiiumaa Island, eastern Baltic Sea. Geomorphology 2022, 404, 108187. [Google Scholar] [CrossRef]
- Goslin, J.; Clemmensen, L.B. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers. Quat. Sci. Rev. 2017, 174, 80–119. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.; Buynevich, I.V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Botha, G.A.; Bristow, C.S.; Porat, N.; Duller, G.; Armitage, S.J.; Roberts, H.M.; Clarke, B.M.; Kota, M.W.; Schoeman, P. Evidence for dune reactivation from GPR profiles on the Maputuland coastal plain South Africa. In Ground Penetrating Radar in Sediments; Bristow, C.S., Jol, H.M., Eds.; Geological Society of London, Special Publication: London, UK, 2003; Volume 211, p. 2946. [Google Scholar]
- Bristow, C.S. Ground Penetrating Radar in Aeolian Dune Sands In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 273–297. [Google Scholar]
- Jol, H.M.; Smith, D.G.; Meyers, R.A. Digital ground penetrating radar (GPR): An improved and very effective geophysical tool for studying modern coastal barriers (examples for the Atlantic, Gulf and Pacific coasts, USA). J. Coast. Res. 1996, 12, 960–968. [Google Scholar]
- Schenk, C.J.; Gautier, D.L.; Olhoeft, G.R.; Lucius, J.E. Internal structure of an eolian dune using ground-penetrating radar. In Eolian Sediments: Ancient and Modern, International Association of Sedimentologists; Pye, K., Lancaster, N., Eds.; Special Publication: London, UK, 1993; Volume 16, pp. 61–69. [Google Scholar]
- Neal, A.; Roberts, C.L. Applications of ground-penetrating radar (GPR) to sedimentological and geomorphological archaeological studies in coastal environments. In Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology; Pye, K., Allen, J.R.L., Eds.; Geological Society of London, Special Publication: London, UK, 2000; Volume 175, pp. 139–171. [Google Scholar]
- Grasmueck, M.; Weger, R. 3D GPR reveals complex internal structure of Pleistocene oolitic sandbar. Lead. Edge 2002, 21, 634–639. [Google Scholar] [CrossRef]
- van Dam, R.L.; Nichol, S.L.; Augustinus, P.C.; Parnell, K.E.; Hosking, P.L.; McLean, R.F. GPR stratigraphy of a large active dune on Parengarenga Sandspit, New Zealand. Lead. Edge 2003, 22, 865–870. [Google Scholar] [CrossRef]
- Havholm, K.G.; Ames, D.V.; Whittecar, G.R.; Wenell, B.A.; Riggs, S.R.; Jol, H.M.; Berger, G.W.; Holmes, M.A. Stratigraphy of back-barrier coastal dunes northern North Carolina southern Virginia. J. Coast. Res. 2004, 20, 980–999. [Google Scholar] [CrossRef]
- Harris, J.G.; Mylroie, J.E.; Carew, J.L. Banana holes: Unique karst features of the Bahamas. Carbonates Evaporites 1995, 10, 215–224. [Google Scholar] [CrossRef]
- Mylroie, J.E. Late Quaternary sea-level position: Evidence from Bahamian carbonate deposition and dissolution cycles. Quat. Int. 2008, 183, 61–75. [Google Scholar] [CrossRef]
- Lundberg, J.; Taggart, B.E. Dissolution pipes in northern Puerto Rico: An exhumed paleokarst. Carbonates Evaporites 1995, 10, 171–183. [Google Scholar] [CrossRef]
- Stott, P. Ground-penetrating radar: A technique for investigating the burrow structure of fossorial vertebrates. Wildl. Res. 1996, 22, 519–530. [Google Scholar] [CrossRef]
- Sherrod, L.W.; Sauck, E.; Simpson, D.D., Jr.; Werkema, J. Swiontek. Case histories of GPR for animal burrow mapping and geometry. J. Environ. Eng. Geophys. 2019, 24, 1–17. [Google Scholar] [CrossRef]
- Kinlaw, A.E. M Grasmueck. Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: The burrowing cascade initiated by the gopher tortoise. Geomorphology 2012, 157, 108–121. [Google Scholar] [CrossRef]
- Chlaib, H.K.; Mahdi, H.; Al-Shukri, H.; Su, M.M.; Catakli, A.; Abd, N. Using ground penetrating radar in levee assessment to detect small-scale animal burrows. J. Appl. Geophys. 2014, 103, 121–131. [Google Scholar] [CrossRef]
- Hearty, P.J.; Olson, S.L. Preservation of trace fossils and molds of terrestrial biota by intense storms in mid–last interglacial (MIS 5c) dunes on Bermuda, with a model for development of hydrological conduits. Palaios 2011, 26, 394–405. [Google Scholar] [CrossRef]
- Hearty, P.J.; Olson, S.L.; Kaufman, D.S.; Edwards, R.L.; Cheng, H. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda. Quat. Sci. Rev. 2004, 23, 1151–1171. [Google Scholar] [CrossRef]
- Martin, A.J. Trace Fossils of San Salvador; Gerace Research Centre: San Salvador, Bahamas, 2006; 80p. [Google Scholar]
- Bishop, G.A.; Pirkle, F.L.; Meyer, B.K.; Pirkle, W.A.; The Foundation for Sea Turtle Geoarchaeology and Zooarchaeology: Morphology of Recent and Ancient Sea Turtle Nests, St. Catherines Island, Georgia, and Cretaceous Fox Hills Sandstone, Elbert County, Colorado. 2011. Available online: https://www.researchgate.net/publication/286002271_The_foundation_for_sea_turtle_geoarchaeology_and_zooarchaeology_Morphology_of_recent_and_ancient_sea_turtle_nests_St_Catherines_Island_Georgia_and_cretaceous_fox_hills_sandstone_Elbert_county_Colorado (accessed on 1 April 2025).
- Buynevich, I.V.; Savarese, M.; Curran, H.A.; Gnivecki, P.L.; Berman, M.J. Coastal morphological and geoarchaeological implications of prehistoric sea turtle nesting in the Bahamian Archipelago. In Joint Symposium on the Natural History and Geology of the Bahamas, 1st ed.; Gerace Research Centre: San Salvador, Bahamas, 2015; pp. 8–9. [Google Scholar]
- Boyajian, G.E.; Thayer, C.W. Clam calamity; a recent supratidal storm-deposit as an analog for fossil shell beds. Palaios 1995, 10, 484–489. [Google Scholar] [CrossRef]
- Roberts, E.M.; Tapanila, L.; Mijal, B. Taphonomy sedimentology of storm-generated continental shell beds: Acase example from the Cretaceous Western Interior Basin. J. Geol. 2008, 116, 462–479. [Google Scholar] [CrossRef]
- Buynevich, I.V.; Savarese, M.; Curran, H.A.; Ingalsbe, T.A. Storm-generated molluscan thanatocoenosis along a carbonate paleoshoreline: Southern Eleuthera Island, The Bahamas. Current Challenges of Science and Education. In Proceedings of the 10th International Scientific and Practical Conference, Berlin, Germany, 3–25 June 2024; pp. 243–248. [Google Scholar]
- Stone, J.W.; Orford, J.D. Storms and their significance in coastal morpho-sedimentary dynamics. Mar. Geology 2004, 210, 1–5. [Google Scholar] [CrossRef]
- Mann, M.E.; Woodruff, J.D.; Donnelly, J.P.; Zhang, Z. Atlantic hurricanes and climate over the past 1500 years. Nature 2009, 460, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Nott, J. A theory (involving tropical cyclones) on the formation of coarse-grained sand beach ridges in NE Australia. Geol. Soc. Lond. Spec. Publ. 2010, 346, 7–22. [Google Scholar] [CrossRef]
- Park, L.E. Comparing two long-term hurricane frequency intensity records from San Salvador Island Bahamas. J. Coast. Res. 2012, 28, 891–902. [Google Scholar]
- Wallace, E.J.; Donnelly, J.P.; van Hengstum, P.J.; Wiman, C.R.; Sullivan, M.; Winkler, T.S.; d’Entremont, N.E.; Toomey, M.; Albury, N. Intense hurricane activity over the past 1500 years at south Andros Island, the Bahamas. Paleoceanogr. Paleoclimatol. 2019, 34, 1761–1783. [Google Scholar] [CrossRef]
- Schmitt, D.; Gischler, E.; Melles, M.; Wennrich, V.; Behling, H.; Shumilovskikh, L.; Anselmetti, F.S.; Vogel, H.; Peckmann, J.; Birgel, D. An annually resolved 5700-year storm archive reveals drivers of Caribbean cyclone frequency. Sci. Adv. 2025, 11, eads5624. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buynevich, I.V.; Savarese, M.; Curran, H.A. Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas. J. Mar. Sci. Eng. 2025, 13, 950. https://doi.org/10.3390/jmse13050950
Buynevich IV, Savarese M, Curran HA. Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas. Journal of Marine Science and Engineering. 2025; 13(5):950. https://doi.org/10.3390/jmse13050950
Chicago/Turabian StyleBuynevich, Ilya V., Michael Savarese, and H. Allen Curran. 2025. "Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas" Journal of Marine Science and Engineering 13, no. 5: 950. https://doi.org/10.3390/jmse13050950
APA StyleBuynevich, I. V., Savarese, M., & Curran, H. A. (2025). Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas. Journal of Marine Science and Engineering, 13(5), 950. https://doi.org/10.3390/jmse13050950