Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,910)

Search Parameters:
Keywords = limestone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3901 KiB  
Article
Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors
by Roberta Lobarinhas, Amélia Dionísio and Gustavo Paneiro
Appl. Sci. 2025, 15(15), 8567; https://doi.org/10.3390/app15158567 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior [...] Read more.
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior is critical for conservation. This study investigates thirteen Portuguese carbonate lithotypes (including marbles, limestones, a travertine, and a breccia) exposed to temperatures of 300 °C and 600 °C. Capillary absorption and open porosity were measured, alongside Leeb hardness (HL) and ultrasonic pulse velocity (UPV), to evaluate their predictive capacity for post-fire moisture behavior. Results show that thermal exposure increases porosity and capillary uptake while reducing mechanical cohesion. Strong correlations between UPV and hydric parameters across temperature ranges highlight its reliability as a non-invasive diagnostic tool. HL performed well in compact stones but was less consistent in porous or heterogeneous lithologies. The findings support the use of NDT tests, like UPV and HL, for rapid post-fire assessments and emphasize the need for lithology-specific conservation strategies. Full article
(This article belongs to the Special Issue Non-Destructive Techniques for Heritage Conservation)
Show Figures

Figure 1

19 pages, 4487 KiB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 (registering DOI) - 1 Aug 2025
Viewed by 94
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

29 pages, 6513 KiB  
Article
Study About the Influence of Diatoms on the Durability of Monumental Limestone
by Daniel Merino-Maldonado, Rebeca Martínez-García, Víctor Baladrón-Blanco, Jesús de Prado-Gil, Fernando J. Fraile-Fernández, María Fernández-Raga, Covadonga Palencia and Andrés Juan-Valdés
Appl. Sci. 2025, 15(15), 8513; https://doi.org/10.3390/app15158513 (registering DOI) - 31 Jul 2025
Viewed by 75
Abstract
This study focuses on the evaluation of the effects of a natural treatment of limestone rock samples using microalgae known as diatoms. A total of 18 samples in the form of 50 mm cubes, carved from limestone rock from Boñar (Spain), were analyzed, [...] Read more.
This study focuses on the evaluation of the effects of a natural treatment of limestone rock samples using microalgae known as diatoms. A total of 18 samples in the form of 50 mm cubes, carved from limestone rock from Boñar (Spain), were analyzed, divided into experimental and control groups with an equal number of samples. Through various tests evaluating porosity, water absorption, frost resistance, and salt crystallization, diatom-treated samples were found to show higher porosity and water absorption compared with the control samples, especially when the entire sample was analyzed as a whole. However, in tests focusing on the surface side most exposed to biodeposition, reduced water absorption was observed in the treated samples, suggesting an improvement in their antiabsorption properties. In addition, slightly higher frost resistance was detected in the treated samples. For this reason, this study provides valuable information on the potential of diatoms to influence the properties of limestone rocks, which can serve as a basis for future research in this field and for the development of more effective treatments to improve the characteristics of rocks used in various applications. Full article
Show Figures

Figure 1

22 pages, 30259 KiB  
Article
Controlling Effects of Complex Fault Systems on the Oil and Gas System of Buried Hills: A Case Study of Beibuwan Basin, China
by Anran Li, Fanghao Xu, Guosheng Xu, Caiwei Fan, Ming Li, Fan Jiang, Xiaojun Xiong, Xichun Zhang and Bing Xie
J. Mar. Sci. Eng. 2025, 13(8), 1472; https://doi.org/10.3390/jmse13081472 - 31 Jul 2025
Viewed by 132
Abstract
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors [...] Read more.
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors influencing hydrocarbon accumulation in buried hill reservoirs are highly diverse, especially in areas with complex, active fault systems. Fault systems play a dual role, both in the formation of reservoirs and in the migration of hydrocarbons. Therefore, understanding the impact of complex fault systems helps enhance the exploration success rate of buried hill traps and guide drilling deployment. In the Beibuwan Basin in the South China Sea, buried hill traps are key targets for deep-buried hydrocarbon exploration in this faulted basin. The low level of exploration and research in buried hills globally limits the understanding of hydrocarbon accumulation conditions, thereby hindering large-scale hydrocarbon exploration. By using drilling data, logging data, and seismic data, stress fields and tectonic faults were restored. There are two types of buried hills developed in the Beibuwan Basin, which were formed during the Late Ordovician-Silurian period and Permian-Triassic period, respectively. The tectonic genesis of the Late Ordovician-Silurian period buried hills belongs to magma diapirism activity, while the tectonic genesis of the Permian-Triassic period buried hills belongs to reverse thrust activity. The fault systems formed by two periods of tectonic activity were respectively altered into basement buried hills and limestone buried hills. The negative structural inversion controls the distribution and interior stratigraphic framework of the deformed Carboniferous strata in the limestone buried hill. The faults and derived fractures of the Late Ordovician-Silurian period and Permian-Triassic period promoted the diagenesis and erosion of these buried hills. The faults formed after the Permian-Triassic period are not conducive to calcite cementation, thus facilitating the preservation of the reservoir space formed earlier. The control of hydrocarbon accumulation by the fault system is reflected in two aspects: on the one hand, the early to mid-Eocene extensional faulting activity directly controlled the depositional process of lacustrine source rocks; on the other hand, the Late Eocene-Oligocene, which is closest to the hydrocarbon expulsion period, is the most effective fault activity period for connecting Eocene source rocks and buried hill reservoirs. This study contributes to understanding of the role of complex fault activity in the formation of buried hill traps within hydrocarbon-bearing basins. Full article
Show Figures

Figure 1

27 pages, 9975 KiB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 199
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 3071 KiB  
Article
Predicting the Uniaxial Compressive Strength of Cement Paste: A Theoretical and Experimental Study
by Chunming Lian, Xiong Zhang, Lu Han, Weijun Wen, Lifang Han and Lizhen Wang
Materials 2025, 18(15), 3565; https://doi.org/10.3390/ma18153565 - 30 Jul 2025
Viewed by 210
Abstract
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement [...] Read more.
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement ratio and paste density; (2) a density-corrected effective water–cement ratio w/ceff that accounts for the physical effects of mineral additives including fly ash, slag, and limestone powder; and (3) a hydration-informed strength model incorporating curing age and temperature through an equivalent hydration degree αte. Experimental validation using over 60 cement paste mixes demonstrated high predictive accuracy, with coefficients of determination up to 0.97. The proposed model unifies the influence of binder composition, packing density, and curing conditions into a physically interpretable and practically applicable formulation. It enables early-age strength prediction of blended cementitious systems using only routine mix and density parameters, supporting performance-based mix design and optimization. The methodology provides a robust foundation for extending compactness-based modeling to more complex cementitious materials and structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 1009 KiB  
Article
Thermoregulatory and Behavioral Responses of Pullets Subjected to High Temperatures and Supplemented with Vitamin D3 and Different Limestone Particle Sizes
by Angélica Maria Angelim, Silvana Cavalcante Bastos Leite, Angela Maria de Vasconcelos, Angefferson Bento Evangelista, Carla Lourena Cardoso Macedo Lourenço, Maria Rogervânia Silva de Farias, Cláudia Goulart de Abreu and Robson Mateus Freitas Silveira
Poultry 2025, 4(3), 33; https://doi.org/10.3390/poultry4030033 - 29 Jul 2025
Viewed by 128
Abstract
The objective of this study was to evaluate the effect of two limestone granulometries (0.568 and 1.943 mm) and different levels of vitamin D3 (12.5 g and 25 g) on the thermoregulatory and behavioral responses of replacement pullets. Lohman brown lineage pullets (270 [...] Read more.
The objective of this study was to evaluate the effect of two limestone granulometries (0.568 and 1.943 mm) and different levels of vitamin D3 (12.5 g and 25 g) on the thermoregulatory and behavioral responses of replacement pullets. Lohman brown lineage pullets (270 birds), with an average weight of 639.60 g ± 6.05 and an initial age of eight weeks, were used in this study. The experimental design adopted was completely randomized in a 2 × 2 × 2 + 1 factorial arrangement (2 limestone granulometries × 2 levels of vitamin D3 × 2 shifts). The respiratory rate (RR), cloaca temperature (CT), feather surface temperature (FST) and featherless surface temperature (FLST) were higher in the afternoon (p < 0.05), while the thermal gradient (TG) was higher in the morning (p < 0.05). Birds supplemented with different limestone granulometries and different levels of vitamin D3 showed similar thermoregulatory and behavioral responses. The “eating” activity was more frequent in the morning, while in the afternoon, the birds remained seated for longer (p < 0.05). The dietary supplementation with different limestone granulometries and vitamin levels did not impair thermoregulation even at higher temperatures. Regardless of the level of vitamin D3, they showed a better expression of welfare-related behavioral activities in the morning in the semiarid region. Full article
Show Figures

Figure 1

20 pages, 5419 KiB  
Article
The Analysis of Fire Protection for Selected Historical Buildings as a Part of Crisis Management: Slovak Case Study
by Jana Jaďuďová, Linda Makovická Osvaldová, Stanislava Gašpercová and David Řehák
Sustainability 2025, 17(15), 6743; https://doi.org/10.3390/su17156743 - 24 Jul 2025
Viewed by 195
Abstract
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, [...] Read more.
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, as part of crisis management. This article focuses on selected castle buildings from Slovakia. Three castle buildings were selected based on their location in the country. All of them are currently used for museum purposes. Using an analytical form, we assessed fire hazards and fire safety measures in two parts, calculated the fire risk index, and proposed solutions. Qualitative research, which is more suitable for the issue at hand, was used to evaluate the selected objects. The main methods used in the research focused on visual assessment of the current condition of the objects and analysis of fire documentation and its comparison with currently valid legal regulations. Based on the results, we can conclude that Kežmarok Castle (part of the historical city center) has a small fire risk (fire risk index = 13 points). Trenčín Castle (situated on a rock above the city) and Stará Ľubovňa Castle (situated on a limestone hill outside the city, surrounded by forest) have an increased risk of fire (fire risk index = 50–63). Significant risk sources identified included surrounding forest areas, technical failures related to outdated electrical installations, open flames during cultural events, the concentration of highly flammable materials, and complex evacuation routes for both people and museum collections. Full article
Show Figures

Figure 1

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 264
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

7 pages, 186 KiB  
Editorial
Recent Advances in Karstic Hydrogeology, 2nd Edition
by Francesco Maria De Filippi and Giuseppe Sappa
Water 2025, 17(15), 2180; https://doi.org/10.3390/w17152180 - 22 Jul 2025
Viewed by 216
Abstract
Karst hydrogeology is the branch of hydrogeology that studies how groundwater flows and behaves in karst systems, characterized by the presence of soluble rocks (mainly limestone and dolomite) that favour chemical dissolution by meteoric water [...] Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
15 pages, 6549 KiB  
Article
Carbonation Deactivation of Limestone in a Micro-Fluidized Bed Reactor
by P. Asiedu-Boateng, N. Y. Asiedu, G. S. Patience, J. R. McDonough and V. Zivkovic
Catalysts 2025, 15(8), 697; https://doi.org/10.3390/catal15080697 - 22 Jul 2025
Viewed by 318
Abstract
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were [...] Read more.
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were measured in a laboratory-scale micro-fluidized bed reactor through multiple carbonation–calcination cycles. The changes in CO2 capture capacity and conversion with the number of cycles mostly correlated with the changes in the physico-chemical properties: Capture capacity dropped from >60% to <15% after 15 cycles and the surface area dropped to below 5 m2 g−1 from as much as 20 m2 g−1 (for the Oterkpolu). The pore volume of the Nauli limestone was essentially invariant with the number of cycles while it increased for the Buipe limestone, and initially increased and then dropped for the Oterpkolu limestone. This decrease was likely due to sintering and a reduction in the number of micropores. The unusual increase in pore volume after multiple cycles was due to the formation of mesopores with smaller pore diameters. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 174
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

26 pages, 4943 KiB  
Article
Ultrasonic Pulse Velocity for Real-Time Filament Quality Monitoring in 3D Concrete Printing Construction
by Luis de la Flor Juncal, Allan Scott, Don Clucas and Giuseppe Loporcaro
Buildings 2025, 15(14), 2566; https://doi.org/10.3390/buildings15142566 - 21 Jul 2025
Viewed by 283
Abstract
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance of quality control in 3DCP is broadly acknowledged, research lacks systematic methods. This research investigates the feasibility of using ultrasonic pulse velocity (UPV) as a practical, in situ, real-time monitoring tool for 3DCP. Two different groups of binders were investigated: limestone calcined clay (LC3) and zeolite-based mixes in binary and ternary blends. Filaments of 200 mm were extruded every 5 min, and UPV, pocket hand vane, flow table, and viscometer tests were performed to measure pulse velocity, shear strength, relative deformation, yield stress, and plastic viscosity, respectively, in the fresh state. Once the filaments presented printing defects (e.g., filament tearing, filament width reduction), the tests were concluded, and the open time was recorded. Isothermal calorimetry tests were conducted to obtain the initial heat release and reactivity of the supplementary cementitious materials (SCMs). Results showed a strong correlation (R2 = 0.93) between UPV and initial heat release, indicating that early hydration (ettringite formation) influenced UPV and determined printability across different mixes. No correlation was observed between the other tests and hydration kinetics. UPV demonstrated potential as a real-time monitoring tool, provided the mix-specific pulse velocity is established beforehand. Further research is needed to evaluate UPV performance during active printing when there is an active flow through the printer. Full article
Show Figures

Figure 1

23 pages, 30355 KiB  
Article
Controls on Stylolite Formation in the Upper Cretaceous Kometan Formation, Zagros Foreland Basin, Iraqi Kurdistan
by Hussein S. Hussein, Ondřej Bábek, Howri Mansurbeg, Juan Diego Martín-Martín and Enrique Gomez-Rivas
Minerals 2025, 15(7), 761; https://doi.org/10.3390/min15070761 - 20 Jul 2025
Viewed by 890
Abstract
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan [...] Read more.
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan Formation (shallow to moderately deep marine) in Northern Iraq. Stylolites exhibit diverse morphologies across mud- and grain-supported limestone facies. Statistical analyses of stylolite spacing, wavelength, amplitude, and their intersections and connectivity indicate that grain size, sorting, and mineral composition are key parameters that determine the geometrical properties of the stylolites and stylolite networks. Stylolites typically exhibit weak connectivity and considerable vertical spacing when hosted in packstone facies with moderate grain sorting. Conversely, mud-supported limestones, marked by poor sorting and high textural heterogeneity, host well-developed stylolite networks characterized by high amplitude and frequent intersections, indicating significant dissolution and deformation processes. Stylolites in mud-supported facies are closely spaced and present heightened amplitudes and intensified junctions, with suture and sharp-peak type. This study unveils that stylolites can potentially enhance porosity in the studied formation. Full article
(This article belongs to the Special Issue Stylolites: Development, Properties, Inversion and Scaling)
Show Figures

Figure 1

25 pages, 528 KiB  
Review
Life Cycle Assessment and Environmental Load Management in the Cement Industry
by Qiang Su, Ruslan Latypov, Shuyi Chen, Lei Zhu, Lixin Liu, Xiaolu Guo and Chunxiang Qian
Systems 2025, 13(7), 611; https://doi.org/10.3390/systems13070611 - 20 Jul 2025
Viewed by 471
Abstract
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison [...] Read more.
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison of cement production impacts across major producing regions, notably highlighting China’s role as the largest global emitter. It covers the core LCA phases, including goal and scope definition, inventory analysis, impact assessment, and interpretation, and emphasizes the role of LCA in quantifying cradle-to-gate impacts (typically around 0.9–1.0 t CO2 per ton of cement), evaluating the emissions reductions provided by alternative cement types (such as ~30–45% lower emissions using limestone calcined clay cements), informing policy frameworks like emissions trading schemes, and guiding sustainability certifications. Strategies for environmental load reduction in cement manufacturing are quantitatively examined, including technological innovations (e.g., carbon capture technologies potentially cutting plant emissions by up to ~90%) and material substitutions. Persistent methodological challenges—such as data quality issues, scope limitations, and the limited real-world integration of LCA findings—are critically discussed. Finally, specific future research priorities are identified, including developing country-specific LCI databases, integrating techno-economic assessment into LCA frameworks, and creating user-friendly digital tools to enhance the practical implementation of LCA-driven strategies in the cement industry. Full article
Show Figures

Figure 1

Back to TopTop