Associations of Automatically Recorded Body Condition Scores with Measures of Production, Health, and Reproduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.2.1. Measurements of BCS
2.2.2. Measurements of BHB, LDH, MY, and mP4
2.3. Identification of Oestrus and Pregnancy
2.4. Identification of Health Status
2.5. Data Analysis and Statistics
3. Results
3.1. Associations of Automatically Recorded Body Condition Scores with Measures of Production and Reproduction
3.2. Associations of Automatically Recorded Body Condition Scores with Measures of Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mäntysaari, P.; Juga, J.; Lidauer, M.H.; Häggman, J.; Mehtiö, T.; Christensen, J.M.; Mäntysaari, E.A. The Relationships between Early Lactation Energy Status Indicators and Endocrine Fertility Traits in Dairy Cows. J. Dairy Sci. 2022, 105, 6833–6844. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.-M.; Maeda, T. Inline Progesterone Monitoring in the Dairy Industry. Trends Biotechnol. 2017, 35, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Nazhat, S.A.; Aziz, A.; Zabuli, J.; Rahmati, S. Importance of Body Condition Scoring in Reproductive Performance of Dairy Cows: A Review. Open J. Vet. Med. 2021, 11, 272–288. [Google Scholar] [CrossRef]
- Rodríguez Alvarez, J.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating Body Condition Score in Dairy Cows From Depth Images Using Convolutional Neural Networks, Transfer Learning and Model Ensembling Techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Gillund, P.; Reksen, O.; Gröhn, Y.T.; Karlberg, K. Body Condition Related to Ketosis and Reproductive Performance in Norwegian Dairy Cows. J. Dairy Sci. 2001, 84, 1390–1396. [Google Scholar] [CrossRef]
- Loeffler, S.H.; de Vries, M.J.; Schukken, Y.H.; de Zeeuw, A.C.; Dijkhuizen, A.A.; de Graaf, F.M.; Brand, A. Use of Ai Technician Scores for Body Condition, Uterine Tone and Uterine Discharge in a Model with Disease and Milk Production Parameters to Predict Pregnancy Risk at First Ai in Holstein Dairy Cows. Theriogenology 1999, 51, 1267–1284. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Z.; Wang, X.; Yang, X.; Zhang, J.; Shi, D. An Improved Single Shot Multibox Detector Method Applied in Body Condition Score for Dairy Cows. Animals 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Somers, J.R.; Huxley, J.; Lorenz, I.; Doherty, M.L.; O’Grady, L. The Effect of Lameness before and during the Breeding Season on Fertility in 10 Pasture-Based Irish Dairy Herds. Ir. Vet. J. 2015, 68, 14. [Google Scholar] [CrossRef] [Green Version]
- Nyman, A.-K.; Emanuelson, U.; Waller, K.P. Diagnostic Test Performance of Somatic Cell Count, Lactate Dehydrogenase, and N-Acetyl-β-d-Glucosaminidase for Detecting Dairy Cows with Intramammary Infection. J. Dairy Sci. 2016, 99, 1440–1448. [Google Scholar] [CrossRef] [Green Version]
- Antanaitis, R.; Malašauskienė, D.; Televičius, M.; Juozaitienė, V.; Rutkauskas, A.; Palubinskas, G. Inline changes in lactate dehydrogenase, milk concentration according to the stage and number of lactation periods, including the status of reproduction and milk yield in dairy cows. Pol. J. Vet. Sci. 2020, 23, 153–156. [Google Scholar] [CrossRef]
- Leroy, T.; Aerts, J.M.; Eeman, J.; Maltz, E.; Stojanovski, G.; Berckmans, D. Automatic Determination of Body Condition Score of Cows Based on 2D Images. Precis. Livest. Farming 2005, 5, 251–255. [Google Scholar]
- Pinedo, P.; Manríquez, D.; Azocar, J.; Klug, B.R.; De Vries, A. Dynamics of Automatically Generated Body Condition Scores during Early Lactation and Pregnancy at First Artificial Insemination of Holstein Cows. J. Dairy Sci. 2022, 105, 4547–4564. [Google Scholar] [CrossRef] [PubMed]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.F.; Lesch, T.N. A Dairy Cow Body Condition Scoring System and Its Relationship to Selected Production Characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Friggens, N.C.; Chagunda, M.G.G. Prediction of the Reproductive Status of Cattle on the Basis of Milk Progesterone Measures: Model Description. Theriogenology 2005, 64, 155–190. [Google Scholar] [CrossRef]
- Van Eerdenburg, F.J.C.M.; Loeffler, H.S.H.; van Vliet, J.H. Detection of Oestrus in Dairy Cows: A New Approach to an Old Problem. Vet. Q. 1996, 18, 52–54. [Google Scholar] [CrossRef]
- Nielen, M.; Schukken, Y.H.; Brand, A.; Deluyker, H.A.; Maatje, K. Detection of Subclinical Mastitis from On-Line Milking Parlour Data. J. Dairy Sci. 1995, 78, 1039–1049. [Google Scholar] [CrossRef]
- Urton, G.; von Keyserlingk, M.A.G.; Weary, D.M. Feeding Behavior Identifies Dairy Cows at Risk for Metritis. J. Dairy Sci. 2005, 88, 2843–2849. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited Review: Body Condition Score and Its Association with Dairy Cow Productivity, Health, and Welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Shahinfar, S.; Guenther, J.N.; David Page, C.; Kalantari, A.S.; Cabrera, V.E.; Fricke, P.M.; Weigel, K.A. Optimization of Reproductive Management Programs Using Lift Chart Analysis and Cost-Sensitive Evaluation of Classification Errors. J. Dairy Sci. 2015, 98, 3717–3728. [Google Scholar] [CrossRef] [Green Version]
- Inchaisri, C.; De Vries, A.; Jorritsma, R.; Hogeveen, H. Improved Knowledge About Conception Rates Influences the Decision to Stop Insemination in Dairy Cows. Reprod. Domest. Anim. 2012, 47, 820–826. [Google Scholar] [CrossRef]
- Britt, J.H. Impacts of Early Postpartum Metabolism on Follicular Development and Fertility. Am. Assoc. Bov. Pract. Conf. Proc. 1991, 39–43. [Google Scholar] [CrossRef]
- Beam, S.W.; Butler, W.R. Effects of energy balance on follicular development and first ovulation in postpartum. Reprod Fertil. Suppl. 1999, 54, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.D.; Souza, A.H.; Amundson, M.C.; Hackbart, K.S.; Fuenzalida, M.J.; Herlihy, M.M.; Ayres, H.; Dresch, A.R.; Vieira, L.M.; Guenther, J.N.; et al. Relationships between Fertility and Postpartum Changes in Body Condition and Body Weight in Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 3666–3683. [Google Scholar] [CrossRef] [Green Version]
- Nebel, R.L.; McGilliard, M.L. Interactions of High Milk Yield and Reproductive Performance in Dairy Cows. J. Dairy Sci. 1993, 76, 3257–3268. [Google Scholar] [CrossRef]
- Beever, D.E. The Impact of Controlled Nutrition during the Dry Period on Dairy Cow Health, Fertility and Performance. Anim. Reprod. Sci. 2006, 96, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S.; Banuelos, S.; Mendonça, L.G.D. Transition Dairy Cow Health Is Associated with First Postpartum Ovulation Risk, Metabolic Status, Milk Production, Rumination, and Physical Activity. J. Dairy Sci. 2020, 103, 9573–9586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, L.X.; Zhang, H.L.; Hua, G.H.; Han, L.; Zhu, Y.; Meng, X.J.; Yang, L.G. Effects of Parity on Uterine Involution and Resumption of Ovarian Activities in Postpartum Chinese Holstein Dairy Cows. J. Dairy Sci. 2010, 93, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.E.P.; Bisinotto, R.S.; Ribeiro, E.S. Mechanisms Underlying Reduced Fertility in Anovular Dairy Cows. Theriogenology 2016, 86, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Wiltbank, M.C.; Souza, A.H.; Carvalho, P.D.; Cunha, A.P.; Giordano, J.O.; Fricke, P.M.; Baez, G.M.; Diskin, M.G. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 2014, 8, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, E.S.; Lima, F.S.; Greco, L.F.; Bisinotto, R.S.; Monteiro, A.P.A.; Favoreto, M.; Ayres, H.; Marsola, R.S.; Martinez, N.; Thatcher, W.W.; et al. Prevalence of Periparturient Diseases and Effects on Fertility of Seasonally Calving Grazing Dairy Cows Supplemented with Concentrates. J. Dairy Sci. 2013, 96, 5682–5697. [Google Scholar] [CrossRef]
- Buckley, F.; O’Sullivan, K.; Mee, J.F.; Evans, R.D.; Dillon, P. Relationships Among Milk Yield, Body Condition, Cow Weight, and Reproduction in Spring-Calved Holstein-Friesians. J. Dairy Sci. 2003, 86, 2308–2319. [Google Scholar] [CrossRef]
- Royal, M.D.; Darwash, A.O.; Flint, A.P.F.; Webb, R.; Woolliams, J.A.; Lamming, G.E. Declining Fertility in Dairy Cattle: Changes in Traditional and Endocrine Parameters of Fertility. Anim. Sci. 2000, 70, 487–501. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Malašauskienė, D.; Televičius, M.; Urbutis, M.; Baumgartner, W. Relation of Automated Body Condition Scoring System and Inline Biomarkers (Milk Yield, β-Hydroxybutyrate, Lactate Dehydrogenase and Progesterone in Milk) with Cow’s Pregnancy Success. Sensors 2021, 21, 1414. [Google Scholar] [CrossRef] [PubMed]
- Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction. J. Dairy Sci. 2015, 98, 3896–3905. [Google Scholar] [CrossRef] [Green Version]
- Hernández Castellano, L.E.; Wall, S.; Stephan, R.; Corti, S.; Bruckmaier, R. Milk Somatic Cell Count, Lactate Dehydrogenase Activity, and Immunoglobulin G Concentration Associated with Mastitis Caused by Different Pathogens: A Field Study. Schweiz. Arch. Für Tierheilkd. 2017, 159, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Assessment of Subacute Mammary Inflammation by Soluble Biomarkers in Comparison to Somatic Cell Counts in Quarter Milk Samples from Dairy Cows—Zank—1998—Journal of Veterinary Medicine Series A—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0442.1998.tb00799.x (accessed on 13 August 2022).
- Klein, R.; Nagy, O.; Tóthová, C.; Chovanová, F. Clinical and Diagnostic Significance of Lactate Dehydrogenase and Its Isoenzymes in Animals. Vet. Med. Int. 2020, 2020, e5346483. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Schukken, Y.H.; Nielen, M.; Brand, A. Low Somatic Cell Count: A Risk Factor for Subsequent Clinical Mastitis in a Dairy Herd. J. Dairy Sci. 2000, 83, 1248–1255. [Google Scholar] [CrossRef]
- Patel, Y.; Modi, R.J.; Trivedi, M. Relationship Between Body Condition Score. Trends Biosci. 2020, 13. [Google Scholar]
- Valde, J.P.; Lystad, M.L.; Simensen, E.; Østerås, O. Comparison of Feeding Management and Body Condition of Dairy Cows in Herds with Low and High Mastitis Rates. J. Dairy Sci. 2007, 90, 4317–4324. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.P.; Lee, J.M.; Macdonald, K.A.; Stafford, K.; Matthews, L.; Roche, J.R. Associations Among Body Condition Score, Body Weight, Somatic Cell Count, and Clinical Mastitis in Seasonally Calving Dairy Cattle. J. Dairy Sci. 2007, 90, 637–648. [Google Scholar] [CrossRef]
Indicator/Biomarker | Status of Pregnancy | M | SE | 95% CI | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
BCS, score | Non-pregnant a | 3.20 ***,b | 0.019 | 3.16 | 3.24 |
Pregnant b | 3.29 ***,a | 0.019 | 3.25 | 3.33 | |
mP4, ng/mL | Non-pregnant | 12.89 ***,b | 0.600 | 11.71 | 14.07 |
Pregnant | 23.82 ***,a | 0.255 | 23.31 | 24.32 | |
LDH, µmol/min | Non-pregnant | 25.01 **,b | 0.962 | 23.11 | 26.90 |
Pregnant | 21.56 **,a | 0.715 | 20.15 | 22.97 | |
BHB, mmol/L | Non-pregnant | 0.06 | 0.001 | 0.057 | 0.063 |
Pregnant | 0.06 | 0.001 | 0.056 | 0.059 | |
MY, kg/day | Non-pregnant | 30.54 ***,b | 0.503 | 29.55 | 31.52 |
Pregnant | 25.28 ***,a | 0.357 | 24.58 | 25.99 |
Indicator/Biomarker | Class of BCS | M | SE | 95% CI | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
mP4, ng/mL | 2.5–3.0 | 16.70 | 0.865 | 14.99 | 18.41 |
3.0–3.5 | 18.05 | 0.580 | 16.91 | 19.19 | |
3.5–4.0 | 19.15 | 0.740 | 17.69 | 20.61 | |
LDH, µmol/min | 2.5–3.0 | 27.16 | 1.356 | 24.48 | 29.84 |
3.0–3.5 | 21.81 **,c | 0.779 | 20.27 | 23.34 | |
3.5–4.0 | 23.32 **,b | 1.289 | 20.77 | 25.86 | |
BHB, mmol/L | 2.5–3.0 | 0.06 | 0.001 | 0.06 | 0.06 |
3.0–3.5 | 0.06 | 0.002 | 0.06 | 0.06 | |
3.5–4.0 | 0.06 | 0.001 | 0.06 | 0.06 | |
MY, kg/day | 2.5–3.0 | 32.18 ***,b,c | 0.722 | 30.76 | 33.61 |
3.0–3.5 | 29.24 ***,a,c | 0.419 | 28.42 | 30.07 | |
3.5–4.0 | 22.67 ***,a,b | 0.511 | 21.66 | 23.68 |
Indicator/Biomarker | Class of Biomarker | M | SE | 95% CI | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
BCS | 2.5–3.0 | 2.20 ***,c | 0.129 | 1.94 | 2.46 |
3.0–3.5 | 2.61 ***,c | 0.106 | 2.40 | 2.82 | |
3.5–4.0 | 3.82 ***,a,b | 0.195 | 3.43 | 4.20 | |
mP4 | ≤15.5 | 3.10 **,b | 0.221 | 2.66 | 3.54 |
>15.5 | 2.69 **,a | 0.086 | 2.52 | 2.86 | |
BHB | ≤0.06 | 2.76 | 0.090 | 2.59 | 2.94 |
>0.06 | 2.91 | 0.238 | 2.43 | 3.38 | |
LDH | ≤27 | 2.69 | 0.094 | 2.50 | 2.87 |
>27 | 3.04 | 0.180 | 2.69 | 3.40 |
Biomarker | Disease | Mean | SEM | 95% CI | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
BCS, score | Healthy a n = 483 | 3.26 *,d | 0.015 | 3.23 | 3.28 |
Subclinical ketosis b n = 21 | 3.13 *,c | 0.075 | 2.97 | 3.29 | |
Subclinical mastitis c n = 26 | 3.43 ***,d,*,b | 0.070 | 3.28 | 3.57 | |
Metritis d n = 67 | 3.12 ***,c,*,a | 0.042 | 3.04 | 3.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antanaitis, R.; Malašauskienė, D.; Televičius, M.; Urbutis, M.; Rutkauskas, A.; Šertvytytė, G.; Anskienė, L.; Baumgartner, W. Associations of Automatically Recorded Body Condition Scores with Measures of Production, Health, and Reproduction. Agriculture 2022, 12, 1834. https://doi.org/10.3390/agriculture12111834
Antanaitis R, Malašauskienė D, Televičius M, Urbutis M, Rutkauskas A, Šertvytytė G, Anskienė L, Baumgartner W. Associations of Automatically Recorded Body Condition Scores with Measures of Production, Health, and Reproduction. Agriculture. 2022; 12(11):1834. https://doi.org/10.3390/agriculture12111834
Chicago/Turabian StyleAntanaitis, Ramūnas, Dovilė Malašauskienė, Mindaugas Televičius, Mingaudas Urbutis, Arūnas Rutkauskas, Greta Šertvytytė, Lina Anskienė, and Walter Baumgartner. 2022. "Associations of Automatically Recorded Body Condition Scores with Measures of Production, Health, and Reproduction" Agriculture 12, no. 11: 1834. https://doi.org/10.3390/agriculture12111834
APA StyleAntanaitis, R., Malašauskienė, D., Televičius, M., Urbutis, M., Rutkauskas, A., Šertvytytė, G., Anskienė, L., & Baumgartner, W. (2022). Associations of Automatically Recorded Body Condition Scores with Measures of Production, Health, and Reproduction. Agriculture, 12(11), 1834. https://doi.org/10.3390/agriculture12111834