A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us
Abstract
:1. Introduction
2. Methods
2.1. Intra-Renal Temperature during Flexible Ureteroscopy
2.2. Intra-Renal Pressure during Flexible Ureteroscopy
2.3. Managing Intra-Renal Temperature and Pressures: Tips and Tricks
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclosure
References
- Rassweiler, J.; Rassweiler, M.C.; Kenngott, H.; Frede, T.; Michel, M.S.; Alken, P.; Clayman, R. The past, present and future of minimally invasive therapy in urology: A review and speculative outlook. Minim. Invasive Ther. Allied Technol. 2013, 22, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Skolarikos, A.; Jung, H.U.; Somani, B.; Davis, N.D.; Tzelves, L.; Neisius, A.; Tailly, T.; Geraghty, R.; Gambaro, G. Guidelines Urolithiasis; EAU Guidelines Office: Arnhem, The Netherlands, 2022; ISBN 978-94-92671-16-5. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 20 May 2022).
- Ventimiglia, E.; Pauchard, F.; Quadrini, F.; Sindhubodee, S.; Kamkoum, H.; Jiménez Godínez, A.; Doizi, S.; Traxer, O. High- and low-power laser lithotripsy achieve similar results: A systematic review and meta-analysis of available clinical series. J. Endourol. 2021, 35, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, T.; Yasunaga, H.; Horiguchi, H.; Nishimatsu, H.; Kume, H.; Ohe, K.; Matsuda, S.; Fushimi, K.; Homma, Y. A nomogram predicting severe adverse events after ureteroscopic lithotripsy: 12372 patients in a Japanese national series. BJU Int. 2013, 111, 459–466. [Google Scholar] [CrossRef] [PubMed]
- De Coninck, V.; Keller, E.X.; Somani, B.; Giusti, G.; Proietti, S.; Rodriguez-Socarras, M.; Rodríguez-Monsalve, M.; Doizi, S.; Ventimiglia, E.; Traxer, O. Complications of ureteroscopy: A complete overview. World J. Urol. 2020, 38, 2147–2166. [Google Scholar] [CrossRef]
- Chung, J.H.; Baek, M.; Park, S.S.; Han, D.H. The Feasibility of Pop-Dusting Using High-Power Laser (2 J × 50 Hz) in Retrograde Intrarenal Surgery for Renal Stones: Retrospective Single-Center Experience. J. Endourol. 2020, 35, 279–284. [Google Scholar] [CrossRef]
- Aldoukhi, A.; Hall, T.; Ghani, K.; Roberts, W. Strike Rate: Analysis of Laser Fiber to Stone Distance During Different Modes of Laser Lithotripsy. J. Urol. 2020, 203, e626. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Pauchard, F.; Gorgen, A.R.H.; Panthier, F.; Doizi, S.; Traxer, O. How do we assess the efficacy of Ho:YAG low-power laser lithotripsy for the treatment of upper tract urinary stones? Introducing the Joules/mm3 and laser activity concepts. World J. Urol. 2021, 39, 891–896. [Google Scholar] [CrossRef]
- Panthier, F.; Ventimiglia, E.; Berthe, L.; Chaussain, C.; Daudon, M.; Doizi, S.; Traxer, O. How much energy do we need to ablate 1 mm3 of stone during Ho:YAG laser lithotripsy? An in vitro study. World J. Urol. 2020, 38, 2945–2953. [Google Scholar] [CrossRef]
- Mekayten, M.; Lorber, A.; Katafigiotis, I.; Sfoungaristos, S.; Leotsakos, I.; Heifetz, E.M.; Yutkin, V.; Gofrit, O.N.; Duvdevani, M. Will stone density stop being a key factor in endourology? The impact of stone density on laser time using Lumenis laser p120w and standard 20w laser—A comparative study. J. Endourol. 2019, 33, 585–589. [Google Scholar] [CrossRef]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Maxwell, A.D.; MacConaghy, B.; Harper, J.D.; Aldoukhi, A.H.; Hall, T.L.; Roberts, W.W. Simulation of Laser Lithotripsy-Induced Heating in the Urinary Tract. J. Endourol. 2018, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Aldoukhi, A.H.; Ghani, K.R.; Hall, T.L.; Roberts, W.W. Thermal Response to High-Power Holmium Laser Lithotripsy. J. Endourol. 2017, 31, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Aldoukhi, A.H.; Hall, T.L.; Ghani, K.R.; Maxwell, A.D.; MacConaghy, B.; Roberts, W.W. Caliceal Fluid Temperature during High-Power Holmium Laser Lithotripsy in an in Vivo Porcine Model. J. Endourol. 2018, 32, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liang, L.; Yu, Y.; Huang, B.; Chen, J.N.; Wang, C.; Zhu, Z.; Liang, X. Thermal effect of holmium laser during ureteroscopic lithotripsy. BMC Urol. 2020, 20, 69. [Google Scholar] [CrossRef]
- Noureldin, Y.A.; Farsari, E.; Ntasiotis, P.; Adamou, C.; Vagionis, A.; Vrettos, T.; Liatsikos, E.N.; Kallidonis, P. Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J. Urol. 2020, 39, 1257–1262. [Google Scholar] [CrossRef]
- Kronenberg, P.; Traxer, O. The laser of the future: Reality and expectations about the new thulium fiber laser—A systematic review. Transl. Androl. Urol. 2019, 8 (Suppl. 4), 398–417. [Google Scholar] [CrossRef]
- Petzold, R.; Suarez-ibarrola, R.; Miernik, A. Temperature Assessment of a Novel Pulsed Thulium Solid-State Laser Compared. J. Endourol. 2021, 35, 853–885. [Google Scholar] [CrossRef]
- Andreeva, V.; Vinarov, A.; Yaroslavsky, I.; Kovalenko, A.; Vybornov, A.; Rapoport, L.; Enikeev, D.; Sorokin, N.; Dymov, A.; Tsarichenko, D.; et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J. Urol. 2020, 38, 497–503. [Google Scholar] [CrossRef]
- Molina, W.R.; Carrera, R.V.; Chew, B.H.; Knudsen, B.E. Temperature rise during ureteral laser lithotripsy: Comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium—YAG laser (Ho:YAG). World J. Urol. 2021, 39, 3951–3956. [Google Scholar] [CrossRef]
- Okhunov, Z.; Jiang, P.; Afyouni, A.S.; Ayad, M.; Arada, R.; Brevik, A.; Akopian, G.; Patel, R.M.; Landman, J.; Clayman, R.V. Caveat Emptor: The Heat Is ON-An in Vivo Evaluation of the Thulium Fiber Laser and Temperature Changes in the Porcine Kidney during Dusting and Fragmentation Modes. J. Endourol. 2021, 35, 1716–1722. [Google Scholar] [CrossRef]
- Jung, H.; Osther, P.J.S. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 2015, 4, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osther, P.J.S. Risks of flexible ureterorenoscopy: Pathophysiology and prevention. Urolithiasis 2018, 46, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Tokas, T.; Herrmann, T.R.W.; Skolarikos, A.; Nagele, U. Pressure matters: Intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J. Urol. 2019, 37, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Loftus, C.; Byrne, M.; Monga, M. High pressure endoscopic irrigation: Impact on renal histology. Int. Braz. J. Urol. 2021, 47, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Doizi, S.; Uzan, A.; Keller, E.X.; De Coninck, V.; Kamkoum, H.; Barghouthy, Y.; Ventimiglia, E.; Traxer, O. Comparison of intrapelvic pressures during flexible ureteroscopy, mini-percutaneous nephrolithotomy, standard percutaneous nephrolithotomy, and endoscopic combined intrarenal surgery in a kidney model. World J. Urol. 2020, 39, 2709–2717. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Williams, K.; Somani, B.; Rukin, N. Intrarenal pressure and irrigation flow with commonly used ureteric access sheaths and instruments. Cent. Eur. J. Urol. 2015, 68, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Tracey, J.; Gagin, G.; Morhardt, D.; Hollingsworth, J.; Ghani, K.R. Ureteroscopic High-Frequency Dusting Utilizing a 120-W Holmium Laser. J. Endourol. 2018, 32, 290–295. [Google Scholar] [CrossRef]
- Auge, B.K.; Pietrow, P.K.; Lallas, C.D.; Raj, G.V.; Santa-Cruz, R.W.; Preminger, G.M. Ureteral Access Sheath Provides Protection against Elevated Renal Pressures during Routine Flexible Ureteroscopic Stone Manipulation. J. Endourol. 2004, 18, 33–36. [Google Scholar] [CrossRef]
- Doizi, S.; Letendre, J.; Cloutier, J.; Ploumidis, A.; Traxer, O. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: A pilot study. World J. Urol. 2021, 39, 555–561. [Google Scholar] [CrossRef]
- Sener, T.E.; Cloutier, J.; Villa, L.; Marson, F.; Buttice, S.; Doizi, S.; Traxer, O. Can We Provide Low Intrarenal Pressures with Good Irrigation Flow by Decreasing the Size of Ureteral Access Sheaths? J. Endourol. 2016, 30, 49–55. [Google Scholar] [CrossRef]
- Doizi, S. Intrarenal Pressure: What Is Acceptable for Flexible Ureteroscopy and Percutaneous Nephrolithotomy? Eur. Urol. Focus. 2021, 7, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Dau, J.J.; Hall, T.L.; Maxwell, A.D.; Ghani, K.R.; Roberts, W.W. Effect of chilled irrigation on calyceal fluid temperature and time to thermal injury threshold during laser lithotripsy: In vitro model. J. Endourol. 2021, 35, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Winship, B.; Wollin, D.; Carlos, E.; Peters, C.; Li, J.; Terry, R.; Boydston, K.; Preminger, G.M.; Lipkin, M.E. The Rise and Fall of High Temperatures during Ureteroscopic Holmium Laser Lithotripsy. J. Endourol. 2019, 33, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Aldoukhi, A.H.; Dau, J.J.; Majdalany, S.E.; Hall, T.L.; Ghani, K.R.; Hollingsworth, J.M.; Ambani, S.N.; Dauw, C.A.; Roberts, W.W. Patterns of Laser Activation during Ureteroscopic Lithotripsy: Effects on Caliceal Fluid Temperature and Thermal Dose. J. Endourol. 2021, 35, 1217–1222. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Y.; Jia, Z.; Guan, Y.; Fei, W.; Ai, X. Temperature profiles of calyceal irrigation fluids during flexible ureteroscopic Ho:YAG laser lithotripsy. Int. Urol. Nephrol. 2021, 53, 415–419. [Google Scholar] [CrossRef]
Risks | Solutions |
---|---|
High temperature:
| Increase irrigation flow Decrease laser power Pauses during laser activation Chilled irrigation fluid? |
High pressure:
| Decrease irrigation flow Use of Ureteral access sheath Occupy working channel |
High Temperature | High Pressure |
---|---|
Decrease irrigation flow Increase laser power | Increase irrigation flow No use of Ureteral access sheath Empty working channel |
Safe Temperature Setting | ||
---|---|---|
Laser power | Irrigation flow | Saline bag height |
10 W | 10 mL/min | >60 cm H2O * |
20 W | 15 mL/min | 100 cm H2O |
40 W | 40 mL/min | 304 cm H2O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauchard, F.; Ventimiglia, E.; Corrales, M.; Traxer, O. A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us. J. Clin. Med. 2022, 11, 3429. https://doi.org/10.3390/jcm11123429
Pauchard F, Ventimiglia E, Corrales M, Traxer O. A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us. Journal of Clinical Medicine. 2022; 11(12):3429. https://doi.org/10.3390/jcm11123429
Chicago/Turabian StylePauchard, Felipe, Eugenio Ventimiglia, Mariela Corrales, and Olivier Traxer. 2022. "A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us" Journal of Clinical Medicine 11, no. 12: 3429. https://doi.org/10.3390/jcm11123429
APA StylePauchard, F., Ventimiglia, E., Corrales, M., & Traxer, O. (2022). A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us. Journal of Clinical Medicine, 11(12), 3429. https://doi.org/10.3390/jcm11123429