Bollen Pinto, B.; Ribas Ripoll, V.; Subías-Beltrán, P.; Herpain, A.; Barlassina, C.; Oliveira, E.; Pastorelli, R.; Braga, D.; Barcella, M.; Subirats, L.;
et al. Application of an Exploratory Knowledge-Discovery Pipeline Based on Machine Learning to Multi-Scale OMICS Data to Characterise Myocardial Injury in a Cohort of Patients with Septic Shock: An Observational Study. J. Clin. Med. 2021, 10, 4354.
https://doi.org/10.3390/jcm10194354
AMA Style
Bollen Pinto B, Ribas Ripoll V, Subías-Beltrán P, Herpain A, Barlassina C, Oliveira E, Pastorelli R, Braga D, Barcella M, Subirats L,
et al. Application of an Exploratory Knowledge-Discovery Pipeline Based on Machine Learning to Multi-Scale OMICS Data to Characterise Myocardial Injury in a Cohort of Patients with Septic Shock: An Observational Study. Journal of Clinical Medicine. 2021; 10(19):4354.
https://doi.org/10.3390/jcm10194354
Chicago/Turabian Style
Bollen Pinto, Bernardo, Vicent Ribas Ripoll, Paula Subías-Beltrán, Antoine Herpain, Cristina Barlassina, Eliandre Oliveira, Roberta Pastorelli, Daniele Braga, Matteo Barcella, Laia Subirats,
and et al. 2021. "Application of an Exploratory Knowledge-Discovery Pipeline Based on Machine Learning to Multi-Scale OMICS Data to Characterise Myocardial Injury in a Cohort of Patients with Septic Shock: An Observational Study" Journal of Clinical Medicine 10, no. 19: 4354.
https://doi.org/10.3390/jcm10194354
APA Style
Bollen Pinto, B., Ribas Ripoll, V., Subías-Beltrán, P., Herpain, A., Barlassina, C., Oliveira, E., Pastorelli, R., Braga, D., Barcella, M., Subirats, L., Bauzá-Martinez, J., Odena, A., Ferrario, M., Baselli, G., Aletti, F., Bendjelid, K., & on behalf of the Shockomics Consortium.
(2021). Application of an Exploratory Knowledge-Discovery Pipeline Based on Machine Learning to Multi-Scale OMICS Data to Characterise Myocardial Injury in a Cohort of Patients with Septic Shock: An Observational Study. Journal of Clinical Medicine, 10(19), 4354.
https://doi.org/10.3390/jcm10194354