Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Extract Preparation
2.3. Qualitative Screening of Phytochemicals
2.3.1. Detection of Alkaloids
Mayer’s Test
Wagner’s Test
2.3.2. Detection of Phenolics
Ferric Chloride Test
2.3.3. Detection of Flavonoids
Sodium Hydroxide Test
2.3.4. Detection of Terpenoids
2.3.5. Detection of Tannins
Ferric Chloride Test
2.3.6. Detection of Saponins
Froth Test
2.4. Quantitative Analysis of Phytochemicals
2.4.1. Determination of Percentage of Yield
2.4.2. Determination of Total Phenolic Content (TPC)
2.4.3. Determination of Total Flavonoid Content (TFC)
2.5. Antioxidant Activity Assays
2.5.1. DPPH Radical Scavenging Activity
2.5.2. ABTS Radical Scavenging Activity
2.5.3. Determination of IC50 and Anti-Radical Power (ARP)
2.5.4. FRAP Assay
2.6. Fourier-Transform Infrared (FTIR) Spectroscopy
2.7. HPLC Analysis
2.7.1. Calculation of Relative Response Factors (RRFs)
2.7.2. Quantification of Phenolic Acids
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening
3.2. Percentage of Yield
3.3. Total Phenolic and Flavonoid Content (TPC and TFC)
3.4. Antioxidant Activities
3.5. FTIR Spectra of the Sample Extracts
3.6. Identified and Quantified Phenolic Compounds in the Sample Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, B.K.; Brunton, N.P.; Brennan, C.S. Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction, 1st ed.; Wiley-Blackwell Publication: Hoboken, NJ, USA, 2013. [Google Scholar]
- Shi, Q.; Li, L.; Huo, C.; Zhang, M.; Wang, Y. Study on Natural Medicinal Chemistry and New Drug Development. Zhongcaoyao (Chin. Trad. Herb. Drugs.) 2010, 41, 1583–1589. [Google Scholar]
- El-Nashar, H.A.S.; El-Din, M.I.G.; Hritcu, L.; Eldahshan, O.A. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules 2021, 26, 7546. [Google Scholar] [CrossRef]
- El-Shawi, O.E.; El-Nashar, H.A.S.; Abd El-Rahman, S.S.; Eldahshan, O.A.; Singab, A.N.B. Protective effect of acrocarpus fraxinifolius extract against hepatic fibrosis induced by Gamma irradiation and carbon tetrachloride in albino rats. Int. J. Radiat. Biol. 2023, 99, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical antioxidants for health and medicine—A move towards nature. Biotechnol. Mol. Biol. Rev. 2007, 1, 97–104. [Google Scholar]
- Prashith Kekuda, T.R.; Raghavendra, H.I.; Bharadwaj, N.A.; Akhilesha, S. Traditional uses, chemistry and pharmacological activities of Leea indica (Burm. f.) Merr. (Vitaceae): A comprehensive review. Int. J. Green. Pharm. 2018, 12, S71–S80. [Google Scholar]
- Kumari, P.; Kumari, C.; Singh, P.S. Phytochemical screening of selected medicinal plants for secondary metabolites. Int. J. Life Sci. Sci. Res. 2017, 3, 1151–1157. [Google Scholar] [CrossRef]
- Gupta, A.; Naraniwal, M.; Kothari, V. Modern extraction methods for preparation of bioactive plant extracts. Int. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Ncube, A.; Afolayan, A.; Okoh, A. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr. J. Biotechnol. 2008, 7, 1797–1806. [Google Scholar] [CrossRef]
- Liou, G.-Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef]
- Gecer, E.N.; Erenler, R. Biogenic Synthesis of Silver Nanoparticles Using Echium vulgare: Characterisation, Quantitative Analysis of Bioactive Compounds, Antioxidant Activity and Catalytic Degradation. J. Indian Chem. Soc. 2023, 100, 101003. [Google Scholar] [CrossRef]
- Aissous, I.; Benrebai, M.; Ameddah, S.; Menad, A.; Erenler, R.; Benayache, S.; Benayache, F. The preventive effects of Centaurea maroccana Ball. extract against oxidative stress induced by cisplatin in mice brains: In vitro and in vivo studies. Drug Chem. Toxicol. 2023, 46, 1162–1175. [Google Scholar] [CrossRef] [PubMed]
- Guzel, A.; Aksit, H.; Elmastas, M.; Erenler, R. BioassayGuided Isolation and Identification of Antioxidant Flavonoids From Cyclotrichium origanifolium (Labill.) Manden. and Scheng. Pharmacogn. Mag. 2017, 13, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Hosaflioglu, I. Phytochemical Analysis and Biological Activity of Astragalus onobrychis: Quantitative Analysis of Phenolic Compounds, Antioxidants, and Antibacterial Activities. Food Sci. Nutr. 2025, 13, e70025. [Google Scholar] [CrossRef] [PubMed]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant Activity of an Anatolian Herbal Tea—Origanum Minutiflorum: Isolation and Characterization of Its Secondary Metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef]
- Jimu, L. Treats and conservation strategies for the African cherry (Prunus africana) in its natural range—A review. J. Ecol. Nat. Environ. 2011, 3, 118–130. [Google Scholar]
- Gachie, P.K.; Koech, E.K.; Njunge, J.T.; Simons, J.; Ndalut, P.K. Variation in yield composition of crude bark extracts of P. africana in different provenances of Kenya. For. Trees Livelihoods 2012, 21, 56–62. [Google Scholar] [CrossRef]
- Nyamai, D.W.; Mawia, A.M.; Wambua, F.K.; Njoroge, A.W.; Matheri, F.; Lagat, R.; Kiambi, J.; Arika, W.; Kingori, E.; Ngugi, M.P.; et al. Phytochemical profle of Prunus africana stem bark from Kenya. J. Pharmacogn. Nat. Prod. 2015, 1, 8. [Google Scholar]
- Stewart, K.M. The African cherry (Prunus africana): Can lessons be learned from an over-exploited medicinal tree. J. Ethnopharmacol. 2003, 89, 3–13. [Google Scholar] [CrossRef]
- Kadu, C.A.; Parich, A.; Schueler, S.; Konrad, H.; Muluvi, G.M.; Eyog-Matig, O.; Muchugi, A.; Williams, V.L.; Ramamonjisoa, L.; Kapinga, C.; et al. Bioactive constituents in Prunus africana: Geographical variation throughout Africa and associations with environmental and genetic parameters. Phytochemistry 2012, 83, 70–78. [Google Scholar] [CrossRef]
- Vinceti, B.; Loo, J.; Gaisberger, H.; van Zonneveld, M.J.; Schueler, S.; Konrad, H.; Kadu, C.A.C.; Geburek, T. Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS ONE 2013, 8, e59987. [Google Scholar] [CrossRef]
- Singh, D.; Siew, Y.-Y.; Chong, T.-I.; Yew, H.-C.; Ho, S.S.-W.; Lim, C.S.E.-S.; Tan, W.-X.; Neo, S.-Y.; Koh, H.-L. Identification of phytoconstituents in Leea indica (Burm. F.) Merr. leaves by high performance liquid chromatography micro time-of-flight mass spectrometry. Molecules 2019, 24, 714. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, X.; Fu, Z.; Bais, S.; Hou, X. Anti-amnesic effect of Leea indica extract in scopolamine-induced amnesia of Alzheimer’s type in rats. Int. J. Pharmacol. 2019, 15, 116–123. [Google Scholar] [CrossRef]
- Sakib, S.A.; Tareq, A.M.; Islam, A.; Rakib, A.; Islam, M.N.; Uddin, M.A.; Rahman, M.M.; Seidel, V.; Emran, T.B. Anti-Inflammatory, Thrombolytic and Hair-Growth Promoting Activity of the n-Hexane Fraction of the Methanol Extract of Leea indica Leaves. Plants 2021, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.A.; Amin, A.A.; Patwari, A.H.; Shah, M.B. Validated high performance thin layer chromatography method for simultaneous determination of quercetin and gallic acid in Leea indica. Rev. Bras. Farmacogn. 2017, 27, 50–53. [Google Scholar] [CrossRef]
- Dalu, D.; Duggirala, S.; Akarapu, S. Anti hyperglicemic and hypolipidemic Activity of Leea Indica. Int. J. Bioassay 2014, 3, 3155–3164. [Google Scholar] [CrossRef]
- Ramesh, D.; Rames, D.; Kekuda, P.T.R.; Onkarappa, R.; Vinayaka, K.S.; Raghavendra, H.L. Antifungal and radical scavenging activity of leaf and bark of Leea indica (Burm. f.) Merr. J. Chem. Pharm. Res. 2015, 7, 105–110. [Google Scholar]
- Raihan, M.O.; Tareq, S.M.; Brishti, A.; Alam, M.K.; Haque, A.; Ali, M.S. Evaluation of antitumor activity of Leea indica (Burm. F.) Merr. extract against Ehrlich Ascites Carsinoma (EAC) bearing mice. Am. J. Biomed. Sci. 2012, 4, 143–152. [Google Scholar] [CrossRef]
- Swamy, M.K.; Patra, J.K.; Rudramurthy, G.R. Medicinal Plants: Chemistry, Pharmacology, and Therapeutic Applications; CRC Press: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Khuniad, C.; Nahar, L.; Ritchie, K.J.; Sarker, S.D. Therapeutic potential of Leea indica (Vitaceae). J. Nat. Prod. Discov. 2022, 1, 646. [Google Scholar] [CrossRef]
- Olatujoye, F.; Bamigbade, O.; Oyedeji, O.; Idowu, T.; Oluduro, A. Evaluation of antibacterial, phytochemical screening and GCMS profile of Paullinia pinnata Linn. leaf extracts against clinical wound isolates. Ife J. Sci. 2024, 26, 245–258. [Google Scholar] [CrossRef]
- Zamble, A.; Carpentier, M.; Kandoussi, A.; Sahpaz, S.; Petrault, O.; Ouk, T.; Hennuyer, N.; Fruchart, J.C.; Staels, B.; Bordet, R.; et al. Paullinia pinnata Extracts Rich in Polyphenols Promote Vascular Relaxation via Endothelium-Dependent Mechanisms. J. Cardiovasc. Pharm. 2006, 47, 599–608. [Google Scholar] [CrossRef]
- Jimoh, F.O.; Sofidiya, M.O.; Afolayan, A.J. Antioxidant Properties of the Methanol Extracts from the Leaves of Paullinia pinnata. J. Med. Food 2007, 15, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Lunga, K.P.; Qin, X.-J.; Yang, X.W.; Kuiate, J.-R.; Du, Z.Z.; Gatsing, D. Antimicrobial steroidal saponin and oleanane-type triterpenoidsaponins from Paullinia pinnata. BMC Complement. Altern. Med. 2014, 14, 369. [Google Scholar] [CrossRef] [PubMed]
- Dongo, E.; Hussain, H.; Miemanang, S.R.; Tazoo, D.; Schulz, B.; Krohn, K. Chemical Constituents of Klainedoxa gabonenses and Paullinia pinnata. Rec. Nat. Prod. 2009, 3, 165–169. [Google Scholar]
- Evans, W.C. Trease and Evans Pharmacognosy, 15th ed.; W.B Sauders Company Ltd.: London, UK, 2002; pp. 137–139, 230–240. [Google Scholar]
- Sofowora, A. Medicinal Plant and Traditional Medicine in Africa; Spectrum Books Limited: Ibadan, Nigeria, 1993; pp. 1–12, 101–108. [Google Scholar]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and Extraction: A Review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928–931. [Google Scholar] [CrossRef]
- Stankovic, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. Extracts. Kragujev. J. Sci. 2011, 33, 63–72. [Google Scholar]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17909504 (accessed on 28 May 2025). [CrossRef]
- Garcia, E.J.; Oldoni, T.L.; Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Y.; Tao, Y.D.; Zeng, M.M.; Zhang, S.; Tao, G.J.; Qin, F.; Chen, J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH—Assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M.A. Structural characterization, surface characteristics and non-covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV—Visible spectroscopy and DFT. J. Mol. Struc. 2017, 1137, 569–580. [Google Scholar] [CrossRef]
- Chew, A.L.; Jessica, J.J.A.; Sasidharan, S. Antioxidant antibacterial activity of different parts of Leucas aspera. Asian Pac. J. Trop. Biomed. 2012, 2, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Oussou, J.B.N.; Asiedu-Gyekye, I.J.; Yapo, A.F.; N’Guessan, B.B.; Amoateng, P.; Kouakou, L.K.; Asante, I.K.; Ehile, E.E. In-vitro scavenging activity and acute toxicity study of methanol leaves extract and fractions of Lophira lanceolata Tiegh. Ex Keay(Ochnaceae) in rats. Int. J. Phytomedicine 2016, 8, 411–421. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9916193 (accessed on 28 May 2025).
- Hwang, B.; Wang, J.; Choong, Y. A simplified method for the quantification of total cholesterol in lipids using gas chromatography. J. Food Compos. Anal. 2003, 16, 169–178. [Google Scholar] [CrossRef]
- Dabe, N.E.; Kefale, A.T.; Addo, H.A.; Dido, T.W.; Kedir, M.S.; Afework, H.T.; Kebede, M.A. Phytochemical Screening, Investigation of the toxic and hepatoprotective effect of leaves of Prunus africana-using mice model. Biorxiv 2024. [Google Scholar] [CrossRef]
- Begeno, T.A.; Teka, A.E.; Bafa, T.A.; Nassir, W.B. Phytochemical investigation and characterization on the leaf extract of Prunus africana. Int. Res. J. Pure Appl. Chem. 2020, 21, 47–57. [Google Scholar] [CrossRef]
- Ghagane, S.C.; Puranik, S.I.; Kumbar, V.M.; Nerli, R.B.; Jalalpure, S.S.; Hiremath, M.B.; Neelagund, S.; Aladakatti, R. In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human prostate cancer cell lines. Integr. Med. Res. 2017, 6, 79–87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nafiu, M.O.; Okunlade, A.F.; Yekeen, A.A.; Salawu, M.O. Polyphenolic extract of Paullinia pinnata leaf exhibits antidiabetic, anthyperlipidaemic and antioxidant activities in alloxan-induced diabetic rats. Population 2018, 12, 13. [Google Scholar]
- Johnson, C.; Oladeinde, F.; Kinyua, A.; Michelin, R.; Makinde, J.; Jaiyesimi, A.; Mbiti, W.; Kamau, G.; Kofi-Tsekpo, W.; Pramanik, S.; et al. Comparative assessment of total phenolic content in selected medicinal plants. Niger. J. Nat. Prod. Med. 2008, 12, 49–54. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Karan, M.; Kumar Jena, A.; Sharma, N.; Vasisht, K.; Efferth, T. A systematic analysis of Prunus species with a focus on management plan of Prunus africana (Hook.f.) Kalkman: An autochthon plant of Africa. Eur. J. Med. Plants 2017, 20, 1–24. [Google Scholar] [CrossRef]
- Rahman, M.A.; Imran, T.B.; Islam, S. Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract. Saudi J. Biol. Sci. 2013, 20, 213–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, D.; Khan, M.; Saeed, R. Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum caudatum Leaves. Antioxidants 2015, 4, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.P.; Raffin, F.N.; Moura, T.F. Standardization of extracts from Momordica charantia L. (Cucurbitaceae) by total flavonoids content determination. Acta Farm. Bonaer. 2005, 24, 562–566. Available online: https://pdfs.semanticscholar.org/0171/e61aba267f9ca79e06ffe8bcbccfee1a63a8.pdf (accessed on 28 May 2025).
- Jahan, M.; Bhuiyan, M.; Islam, S.; Ahmed, M.S.; Hasan, M.; Bashera, M.A.L.; Moulick, S. Amaranthus tricolor (red amaranth), an indigenous source of nutrients, minerals, amino acids, phytochemicals, and assessment of its antibacterial activity. J. Agric. Food Res. 2022, 10, 100419. [Google Scholar] [CrossRef]
- Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; et al. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from india. Front. Plant Sci. 2016, 7, 407. [Google Scholar] [CrossRef]
- Madivoli, E.S.; Maina, E.G.; Kairigo, P.K.; Murigi, M.K.; Ogilo, J.K.; Nyangau, J.O.; Kimani, P.K.; Kipyegon, C. In vitro antioxidant and antimicrobial activity of Prunus africana (Hook. f.) Kalkman (bark extracts) and Harrisonia abyssinica Oliv. extracts (bark extracts): A comparative study. J. Med. Plants Econ. Dev. 2018, 2, 39. [Google Scholar] [CrossRef]
- Al-Laith, A.A.; Alkhuzai, J.; Freije, A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab. J. Chem. 2015, 12, 2365–2371. [Google Scholar] [CrossRef]
- Nurlybayeva, K.; Bekturova, A.; Kali, A.; Nurkenova, A.; Abikenova, F.; Amanbay, B.; Amantayeva, A.; Mukasheva, G. Antioxidant potential and phytochemical analysis of medicinal plants used for livestock treatment in Kazakhstan. Casp. J. Environ. Sci. 2024, 22, 653–662. [Google Scholar]
- Karim, M.M.; Fakir, M.F.; Sagar, A.; Murshed, H.M.M.; Ashrafuzzaman, M. Phytochemical screening and antioxidant capacity of some selected medicinal plants of Bangladesh. Bangladesh J. Bot. 2024, 53, 373–380. [Google Scholar] [CrossRef]
- Ramesh, M.M.; Annegowda, H.V. Phytochemical Insights into Antioxidant and Antimicrobial Potentials Across Five Indian Medicinal Plants. Pharmacogn. Res. 2024, 16, 423–434. [Google Scholar]
- Itam, A.; Wati, M.S.; Agustin, V.; Sabri, N.; Jumanah, R.A.; Efdi, M. Comparative Study of Phytochemical, Antioxidant, and Cytotoxic Activities and Phenolic Content of Syzygium aqueum (Burm. f. Alston f.) Extracts Growing in West Sumatera Indonesia. Sci. World J. 2021, 2021, 5537597. [Google Scholar] [CrossRef] [PubMed]
- Mustarichie, R. The antioxidant activity and phytochemical screening of ethanol extract, fractions of water, ethyl acetate and n-hexane from mistletoe tea (Scurrula atropurpurea bl. dans). Asian J. Pharm. Clin. Res. 2017, 10, 343. [Google Scholar] [CrossRef]
- Harun, A.; Ab Rahim, N.E.A.; Jalil, M.A.A.; Rosdi, A.M.; Daud, S.; Harith, S.S.; So’ad, S.Z.M.; Hassan, N.M. Comparative Study of Antioxidant and Antimicrobial Activity of Root, Stem And Leaves of Leea Indica Species. Malays. J. Sci. 2017, 35, 259–274. [Google Scholar] [CrossRef]
- Yahya, M.A.; Tunali, F.; Killi, D.; Sökmen, A. Phenolic profile and volatiles of in vitro propagated Lavandula angustifolia mill. seedlings. Phyton-Int. J. Exp. Bot. 2024, 93, 427–444. [Google Scholar] [CrossRef]
- Drăghici-Popa, A.-M.; Boscornea, A.C.; Brezoiu, A.-M.; Tomas, Ș.T.; Pârvulescu, O.C.; Stan, R. Effects of extraction process factors on the composition and antioxidant activity of blackthorn (Prunus spinosa L.) fruit extracts. Antioxidants 2023, 12, 1897. [Google Scholar] [CrossRef]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle. Evid. Based Complement. Altern. Med. 2021, 2021, 6139308. [Google Scholar] [CrossRef]
- Seal, T. HPLC determination of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of Zanthoxylum acanthopodium, a wild edible plant of Meghalaya state of India. Int. J. Pharm. Pharm. Sci. 2016, 8, 103–109. [Google Scholar]
- Parvizi, F.; Yaghmaei, P.; Rohani, S.A.H.; Mard, S.A. Hepatoprotective properties of p-coumaric acid in a rat model of ischemia-reperfusion. Avicenna J. Phytomedicine 2020, 10, 633. [Google Scholar]
- Boeing, T.; Costa, P.; Venzon, L.; Meurer, M.; Mariano, L.N.B.; França, T.C.S.; Gouveia, L.; de Bassi, A.C.; Steimbach, V.; de Souza, P.; et al. Gastric healing effect of p-coumaric acid isolated from Baccharis dracunculifolia DC on animal model. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 49–57. [Google Scholar] [CrossRef]
- Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-Coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 2013, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Pavlíková, N. Caffeic acid and diseases—Mechanisms of action. Int. J. Mol. Sci. 2022, 24, 588. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Dehsheikh, A.B.; Sourestani, M.M.; Dehsheikh, P.B.; Vitalini, S.; Iriti, M.; Mottaghipisheh, J. A comparative study of essential oil constituents and phenolic compounds of Arabian lilac (Vitex trifolia var. Purpurea): An evidence of season effects. Foods 2019, 8, 52. [Google Scholar] [CrossRef]
Plant Name | Alkaloid | Flavonoid | Terpenoids | Saponins | Tannins | Phenol | Steroids |
---|---|---|---|---|---|---|---|
P.africana bark | ++ | +++ | ++ | + | ++ | +++ | ++ |
L. indica leaves | ++ | ++ | + | − | ++ | ++ | ++ |
P. pinnata leaves | + | ++ | + | − | + | ++ | + |
Wavenumber (cm−1) | Band No. | Band Assignments | Possible Compounds | ||
---|---|---|---|---|---|
Band Range (Literature) (cm−1) | Band Range (Experimental) | ||||
P. africana bark | 1000–650 | 887 | 1 | C=C | alkene |
1400–1000 | 1025, 1047, 1274, 1315 | 2, 3, 4, 5, 6 | C–N/F, C–O | amine, fluoro compound, alcohol, aliphatic ether, ester, phenol. | |
1600–1300 | 1513 | 7 | C–H | alkanes | |
2000–1650 | 1688 | 8 | C=O | carboxylic acid, aliphatic ketone; α, β-unsaturated ester. | |
4000–2500 | 2855, 2925 | 9, 10, 11 | C–H, N–H, and O–H | alkane, alkene, amine salt, and alcohol, carboxylic acid. | |
L. indica leaves | 1000–650 | 764, 868 | 2 | C=C | alkene |
1400–1000 | 1013, 1095, 1144, 1196, 1312 | 3, 4, 5, 6, 7 | C–N/F, C–O | amine, fluoro compound, alcohol, aliphatic ether, ester, phenol. | |
1600–1300 | 1442, 1531 | 8, 9 | C–H | alkanes | |
2000–1600 | 1602, 1684 | 10, 11 | C=O | carboxylic acid, aliphatic ketone; α, β-unsaturated ester. | |
4000–2500 | 2851, 2922 | 12, 13 | C–H, N–H, and O–H | alkane, alkene, amine salt, and alcohol, carboxylic acid. | |
P. pinnata leaves | 1000–650 | 820 | 1 | C=C | alkene |
1400–1000 | 1028, 1241, 1375 | 2, 3, 4 | C–N/F, C–O | amine, fluoro compound, alcohol, aliphatic ether, ester, phenol. | |
1600–1300 | 1438, 1513 | 5, 6 | C–H | alkanes | |
2000–1600 | 1606, 1990 | 7, 8 | C=O | carboxylic acid, aliphatic ketone; α, β-unsaturated ester. | |
4000–2500 | 2851, 2922 | 9, 10 | C–H, N–H, and O–H | alkane, alkene, amine salt, and alcohol, carboxylic acid. |
Plant Name | Phenolic Acids (µg/gm of Extract) | ||||||
---|---|---|---|---|---|---|---|
Trans-Sinapic | Methyl–4-OH-Benzoic | Protocate Chuic | Vanillic | Trans-Ferulic | P-Coumaric | Caffeic | |
P. africana | ND | 515.54 ± 12.75 | 16.78 ± 0.64 | ND | ND | 13.38 ± 1.51 | 34.26 ± 0.61 |
L. indica | ND | 244.8 ± 6.04 | 11.56 ± 0.5 | ND | ND | 11.33 ± 1.04 | ND |
P. pinnata | ND | 347.4 ± 7.77 | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, M.R.; Miletti-Gonzalez, K.E.; Aryee, A.N.A.; Besong, S.A. Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts. Antioxidants 2025, 14, 666. https://doi.org/10.3390/antiox14060666
Karim MR, Miletti-Gonzalez KE, Aryee ANA, Besong SA. Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts. Antioxidants. 2025; 14(6):666. https://doi.org/10.3390/antiox14060666
Chicago/Turabian StyleKarim, Md Rezaul, Karl E. Miletti-Gonzalez, Alberta N. A. Aryee, and Samuel A. Besong. 2025. "Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts" Antioxidants 14, no. 6: 666. https://doi.org/10.3390/antiox14060666
APA StyleKarim, M. R., Miletti-Gonzalez, K. E., Aryee, A. N. A., & Besong, S. A. (2025). Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts. Antioxidants, 14(6), 666. https://doi.org/10.3390/antiox14060666