Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Determination of Botanical Origin
2.3. Preparation of Bee Pollen Extracts
2.4. Phytochemical Analysis of Samples
2.4.1. Assessment of Total Phenol Content
2.4.2. Assessment of Total Flavonoid Content
2.4.3. DPPH Radical Scavenging Assay
2.4.4. Reducing Power (FRAP)
2.4.5. Total Antioxidant Capacity
2.5. Determination of Phenolic Compounds by HPLC
2.6. Statistical Analysis
3. Results
3.1. Botanical Originof Bee Pollen
3.2. Concentration of Total Phenols, Flavonoids, and Antioxidant Capacity of Bee Pollen Extracts
3.3. Phenolic Compounds by HPLC Analysis
3.4. Correlation Among Phenolic Compounds and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rupanar, S.V.; Satpute, R.; Gadhave, P.; Kakade, N. Bee Pollen beyond Nutrition: An Integrated Review of Its Chemical, Pharmacological, and Biological Properties. J. Drug Res. Ayurvedic Sci. 2024, 9, 211. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Gohar, F.; Raza, G.; Khan, M.I.; Hameed, M.; Ali, A.; Chen, C.-C.; Tlak Gajger, I. Bee Pollen as a Food and Feed Supplement and a Therapeutic Remedy: Recent Trends in Nanotechnology. Front. Nutr. 2024, 11, 1371672. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, B.W.; Davis, O.K.; Boue, S.; DeLucca, A.; Deeby, T. Antioxidant Activity of Sonoran Desert Bee Pollen. Food Chem. 2009, 115, 1299–1305. [Google Scholar] [CrossRef]
- Graikou, K.; Kapeta, S.; Aligiannis, N.; Sotiroudis, G.; Chondrogianni, N.; Gonos, E.; Chinou, I. Chemical Analysis of Greek Pollen—Antioxidant, Antimicrobial and Proteasome Activation Properties. Chem. Cent. J. 2011, 5, 33. [Google Scholar] [CrossRef]
- Alimoglu, G.; Guzelmeric, E.; Yuksel, P.I.; Celik, C.; Deniz, I.; Yesilada, E. Monofloral and Polyfloral Bee Pollens: Comparative Evaluation of Their Phenolics and Bioactivity Profiles. LWT 2021, 142, 110973. [Google Scholar] [CrossRef]
- Soares De Arruda, V.A.; Vieria Dos Santos, A.; Figueiredo Sampaio, D.; Da Silva Araújo, E.; De Castro Peixoto, A.L.; Estevinho, L.M.; De Almeida-Muradian, L.B. Brazilian Bee Pollen: Phenolic Content, Antioxidant Properties and Antimicrobial Activity. J. Apic. Res. 2021, 60, 775–783. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Screening of Indian Bee Pollen Based on Antioxidant Properties and Polyphenolic Composition Using UHPLC-DAD-MS/MS: A Multivariate Analysis and ANN Based Approach. Food Res. Int. 2021, 140, 110041. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. -Based Complement. Altern. Med. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Freire, K.R.L.; Lins, A.C.S.; Dórea, M.C.; Santos, F.A.R.; Camara, C.A.; Silva, T.M.S. Palynological Origin, Phenolic Content, and Antioxidant Properties of Honeybee-Collected Pollen from Bahia, Brazil. Molecules 2012, 17, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Tamali, H.S.; Özkırım, A. Beekeeping Activities in Turkey and Algeria. Mellifera 2019, 19, 30–40. [Google Scholar]
- Mokhtarı, M.B.; El Ouar, I.; Zeghına, I.; Tartouga, M.A.; Ghorab, A.; Bahrı, L.; Bensouıcı, C. Palynological Analysis, Phenolic Components and Anti-Inflammatory Activity of some Bee Pollens Collected from the Northeast Region of Algeria. Uludağ Arıcılık Derg. 2022, 22, 45–58. [Google Scholar] [CrossRef]
- Ayad, A.S.; Hébert, M.P.A.; Doiron, J.A.; Loucif-Ayad, W.; Daas, T.; Smagghe, G.; Alburaki, M.; Barnett, D.A.; Touaibia, M.; Surette, M.E. Algerian Propolis from Distinct Geographical Locations: Chemical Profiles, Antioxidant Capacity, Cytotoxicity and Inhibition of 5-Lipoxygenase Product Biosynthesis. Chem. Biodivers. 2024, 21, e202301758. [Google Scholar] [CrossRef]
- Piccinelli, A.L.; Mencherini, T.; Celano, R.; Mouhoubi, Z.; Tamendjari, A.; Aquino, R.P.; Rastrelli, L. Chemical Composition and Antioxidant Activity of Algerian Propolis. J. Agric. Food Chem. 2013, 61, 5080–5088. [Google Scholar] [CrossRef] [PubMed]
- Boufadi, Y.M.; Soubhye, J.; Riazi, A.; Rousseau, A.; Vanhaeverbeek, M.; Nève, J.; Boudjeltia, K.Z.; Van Antwerpen, P. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity. Int. J. Mol. Sci. 2014, 15, 2327–2345. [Google Scholar] [CrossRef]
- Bouhala, A.; Ouchemoukh, S.; Moussi, A.; Beldjoudi, S. Altitude Effect on the Properties of Honeys from the Region of Jijel (Algeria). Pol. J. Food Nutr. Sci. 2020, 70, 169–178. [Google Scholar] [CrossRef]
- Ghorab, A.; Rodríguez-Flores, M.S.; Nakib, R.; Escuredo, O.; Haderbache, L.; Bekdouche, F.; Seijo, M.C. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia’s Region (Algeria). Foods 2021, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, T.; Tsuchiya, I.; Ohta, T.; Benhanifia, M.; Kumazawa, S. Composition of Algerian Propolis, Plant Origin, and Its Antiangiogenic Activity In Vitro. Molecules 2021, 26, 6510. [Google Scholar] [CrossRef] [PubMed]
- Rebiai, A.; Ben Seghir, B.; Hemmami, H.; Zeghoud, S.; Belfar, M.L.; Kouadri, I. Determination of Some Phenolic Acids in Algerian Propolis. Ovidius Univ. Ann. Chem. 2021, 32, 120–124. [Google Scholar] [CrossRef]
- Soltani, E.K.; Zaim, K.; Mokhnache, K.; Haichour, N.; Mezaache-Aichour, S.; Charef, N.; Zerroug, M.M. Polyphenol Contents, Antioxidant and Antibacterial Activities of Aqueous Algerian Propolis Extracts. Phytothérapie 2021, 19, 408–415. [Google Scholar] [CrossRef]
- Zerrouk, S.; Bahloul, R. Palynological and Physicochemical Properties of Multifloral Honey Produced in Some Regions of Algeria. J. Apic. Res. 2023, 62, 345–354. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Almaraz-Abarca, N.; Campos, M.d.G.; Ávila-Reyes, J.A.; Naranjo-Jiménez, N.; Herrera-Corral, J.; González-Valdez, L.S. Variability of Antioxidant Activity among Honeybee-Collected Pollen of Different Botanical Origin. Interciencia 2004, 29, 574–578. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of Beebread as a Food Supplement and Source of Nutraceuticals: Botanical Origin, Nutritional Composition and Antioxidant Activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the Hive to the Table: Nutrition Value, Digestibility and Bioavailability of the Dietary Phytochemicals Present in the Bee Pollen and Bee Bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Rojo, S.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods 2023, 12, 294. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef]
- Kahraman, H.A.; Tutun, H.; Kaya, M.M.; Usluer, M.S.; Tutun, S.; Yaman, C.; Sevin, S.; Keyvan, E. Ethanolic Extract of Turkish Bee Pollen and Propolis: Phenolic Composition, Antiradical, Antiproliferative and Antibacterial Activities. Biotechnol. Biotechnol. Equip. 2022, 36, 45–56. [Google Scholar] [CrossRef]
- Zerrouk, S.; Seijo, M.C.; Boughediri, L.; Escuredo, O.; Rodríguez-Flores, M.S. Palynological Characterisation of Algerian Honeys According to Their Geographical and Botanical Origin. Grana 2014, 53, 147–158. [Google Scholar] [CrossRef]
- Ghorab, A.; Mesbah, M.; Nakib, R.; Kabli, N.; Bekdouche, F.; Seijo, M. Input to the Knowledge of the Melliferous Plants Diversity in Babors Kabylia’s Region (NorthEast of Algeria). Livest. Res. Rural Dev. 2021, 33, 1–11. [Google Scholar]
- Carpes, S.T.; Cabral, I.S.; Luz, C.F.P.; Capeletti, J.P.; Alencar, S.M.; Masson, M.L. Palynological and Physicochemical Characterization of Apis Mellifera L. Bee Pollen in the Southern Region of Brazil. J. Food Agric. Environ. 2009, 7, 667–673. [Google Scholar]
- Aličić, D.; Šubarić, D.; Jašić, M.; Pašalić, H.; Ačkar, Đ. Antioxidant Properties of Pollen. Hrana U Zdr. I Boles. Znan. -Stručni Časopis Za Nutr. I Dijetetiku 2014, 3, 6–12. [Google Scholar]
- Bakchiche, B.; Temizer, İ.K.; Güder, A.; Çelemli, Ö.G.; Yegin, S.Ç.; Bardaweel, S.; Ghareeb, M. Chemical Composition and Biological Activities of Honeybee Products From Algeria. J. Apple Biotechnol. Rep. 2020, 7, 109498. [Google Scholar] [CrossRef]
- Makhloufi, C.; Kerkvliet, J.D.; D’albore, G.R.; Choukri, A.; Samar, R. Characterization of Algerian Honeys by Palynological and Physico-Chemical Methods. Apidologie 2010, 41, 509–521. [Google Scholar] [CrossRef]
- Homrani, M.; Escuredo, O.; Rodríguez-Flores, M.S.; Fatiha, D.; Mohammed, B.; Homrani, A.; Seijo, M.C. Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods 2020, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- El Ghouizi, A.; El Menyiy, N.; Bakour, M.; Badiaa, L. Moroccan Monofloral Bee Pollen: Botanical Origin, Physicochemical Characterization, and Antioxidant Activities. J. Food Qual. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Ilie, C.-I.; Oprea, E.; Geana, E.-I.; Spoiala, A.; Buleandra, M.; Gradisteanu Pircalabioru, G.; Badea, I.A.; Ficai, D.; Andronescu, E.; Ficai, A.; et al. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants 2022, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Hemmami, H.; Ben Seghir, B.; Ben Ali, M.; Rebiai, A.; Zeghoud, S.; Brahmia, F. Phenolic Profile and Antioxidant Activity of Bee Pollen Extracts from Different Regions of Algeria. Ovidius Univ. Ann. Chem. 2020, 31, 93–98. [Google Scholar] [CrossRef]
- Araújo, J.S.; Chambó, E.D.; de Carvalho Costa, M.A.P.; Cavalcante da Silva, S.M.P.; Lopes de Carvalho, C.A.; Estevinho, L.M. Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins. Int. J. Mol. Sci. 2017, 18, 921. [Google Scholar] [CrossRef] [PubMed]
- Fatrcová-Šramková, K.; Nôžková, J.; Kačániová, M.; Máriássyová, M.; Rovná, K.; Stričík, M. Antioxidant and Antimicrobial Properties of Monofloral Bee Pollen. J. Environ. Sci. Health Part B 2013, 48, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Gercek, Y.C.; Celik, S.; Bayram, S. Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules 2021, 27, 117. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.G.; Webby, R.F.; Markham, K.R.; Mitchell, K.A.; Da Cunha, A.P. Age-Induced Diminution of Free Radical Scavenging Capacity in Bee Pollens and the Contribution of Constituent Flavonoids. J. Agric. Food Chem. 2003, 51, 742–745. [Google Scholar] [CrossRef]
- Ulusoy, E.; Kolayli, S. Phenolic Composition and Antioxidant Properties of Anzer Bee Pollen: Phenolics and Antioxidant Properties of Anzer Bee Pollen. J. Food Biochem. 2014, 38, 73–82. [Google Scholar] [CrossRef]
- Karkar, B.; Şahin, S.; Güneş, M.E. Evaluation of Antioxidant Properties and Determination of Phenolic and Carotenoid Profiles of Chestnut Bee Pollen Collected from Turkey. J. Apic. Res. 2021, 60, 765–774. [Google Scholar] [CrossRef]
- Rebiai, A.; Lanez, T. Chemical Composition and Antioxidant Activity of Apis Mellifera Bee Pollen from Northwest Algeria. J. Fundam. Appl. Sci. 2012, 4, 156–163. [Google Scholar] [CrossRef]
- Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Ž.; Šikoparija, B.; Milojković-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Bayram, N.E.; Gercek, Y.C.; Çelik, S.; Mayda, N.; Kostić, A.Ž.; Dramićanin, A.M.; Özkök, A. Phenolic and Free Amino Acid Profiles of Bee Bread and Bee Pollen with the Same Botanical Origin—Similarities and Differences. Arab. J. Chem. 2021, 14, 103004. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Mahmoud, A.A.; Roby, M.H.H.; Smetanska, I.; Ramadan, M.F. Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities: Phenolic Extract from Propolis and Bee Pollen. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Pukalskas, A.; Kazernavičiuté, R.; Balžekas, J. Evaluation of Antioxidant Activity and Flavonoid Composition in Differently Preserved Bee Products. Czech J. Food Sci. 2016, 34, 133–142. [Google Scholar] [CrossRef]
- Limmongkon, A.; Janhom, P.; Amthong, A.; Kawpanuk, M.; Nopprang, P.; Poohadsuan, J.; Somboon, T.; Saijeen, S.; Surangkul, D.; Srikummool, M.; et al. Antioxidant Activity, Total Phenolic, and Resveratrol Content in Five Cultivars of Peanut Sprouts. Asian Pac. J. Trop. Biomed. 2017, 7, 332–338. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and Therapeutic Properties of Bee Pollen: A Review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Mareczek, A.; Wyżgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative Properties of Bee Pollen in Selected Plant Species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobiş, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In Vitro Antioxidant Capacity of Honeybee-Collected Pollen of Selected Floral Origin Harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-Collected Pollen from Five Portuguese Natural Parks: Palynological Origin, Phenolic Content, Antioxidant Properties and Antimicrobial Activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
Sample | Date of Harvest | Geographical Origin | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|---|---|
P1 | Spring 2023 | Tessala Lamtai | 36.4500 | 6.2667 | 600 |
P2 | Spring 2023 | Tassadane Haddada | 36.3667 | 6.2500 | 700 |
P3 | Spring 2023 | Grarem Gouga | 36.4000 | 6.5667 | 500 |
P4 | Spring 2023 | Derradji bousselah | 36.3833 | 6.3333 | 550 |
P5 | Spring 2023 | Rouached | 36.4667 | 6.1167 | 650 |
P6 | Spring 2023 | Zeghaia | 36.4500 | 6.4000 | 450 |
P7 | Spring 2023 | Hamala | 36.3667 | 6.4167 | 600 |
P8 | Spring 2023 | Rouached | 36.4667 | 6.1167 | 650 |
P9 | Spring 2023 | Minar Zarza | 36.3167 | 6.2000 | 750 |
P10 | Summer 2023 | Amira Arres | 36.3000 | 6.2833 | 800 |
P11 | Spring 2023 | Tessala Lamtai | 36.4500 | 6.2667 | 600 |
P12 | Spring 2023 | Oued Althmenia | 36.4667 | 6.3667 | 450 |
P13 | Spring 2023 | Tassala Lemtai | 36.4500 | 6.2667 | 600 |
P14 | Spring 2023 | Mila | 36.4500 | 6.2667 | 710 |
P15 | Spring 2023 | Tassadane Haddada | 36.3667 | 6.2500 | 700 |
Time (min) | RT (min) | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|
Gallic Acid | 7.33 | 0.03 | 0.09 |
Hidroxycinnamic acid | 17.00 | 0.03 | 0.09 |
Chlorogenic acid | 21.33 | 0.02 | 0.06 |
Catechin | 22.94 | 0.04 | 0.13 |
Vanillic acid | 25.08 | 0.01 | 0.04 |
Caffeic acid | 27.25 | 0.02 | 0.06 |
Syringic acid | 28.00 | 0.03 | 0.10 |
Epicatechin | 33.00 | 0.04 | 0.13 |
Trans cinnamic acid | 38.35 | 0.11 | 0.33 |
p-Coumaric acid | 44.74 | 0.04 | 0.12 |
Ferulic acid | 53.66 | 0.09 | 0.28 |
Rutin | 65.61 | 0.08 | 0.24 |
Myricetin | 71.64 | 0.02 | 0.06 |
Resveratrol | 74.55 | 0.04 | 0.13 |
Quercetin | 79.10 | 0.01 | 0.04 |
Naringenin | 84.95 | 0.05 | 0.16 |
Kaempferol | 86.50 | 0.04 | 0.12 |
Sample | Predominant Pollen Grains (>45%) | Secondary Pollen Grains (16–45%) | Important Minor Pollen (3–15%) | Minor Pollen (<3%) | Classification |
---|---|---|---|---|---|
P1 | Cistus type a (63%) | Brassica type b (16%) | Trifolium repens j (11%), Onobruchis sp. j (7%) | Anthemis type e, Castanea sativa i, Centaurea sp. e, Fabaceae j, Rosaceae k | Monofloral |
P2 | Cistus type a (82%) | / | Olea europaea l (14%) | Quercus sp. i | Monofloral |
P3 | Cistus type a (65%) | Erica sp. c (25%) | Quercus sp. i (7%) | Oxalis sp. m | Monofloral |
P4 | Brassica type b (82%) | / | Meliotus type j (15%) | Rosaceae k, Prunus sp. k, Cistus type a, Carduus type e, Apiaceae d | Monofloral |
P5 | / | Brassica type b (39%), vitex sp. g (41%) | Melilotus type j (10%), Erica sp. c (7%) | Cistus type a | Polyfloral |
P6 | Brassica type b (50%) | Erica sp. c (36%) | Rubus sp. k (6%), Aster type e (4%), Taraxacum type e (4%) | Capparis spinosa n, Cistus type a | Monofloral |
P7 | Brassica type b (55%) | Cistus type a (29%), | Melilotus type j (8%), Lotus sp. j ( 5%) | Rubus sp. k, Anthemis type e | Monofloral |
P8 | / | Brassica type b (43%), vitex sp. g (42%) | Melilotus type j (7%), Erica sp. c (5%) | Cistus type a | Polyfloral |
P9 | Pimpinella anisum d (49%) | / | Hedysarum coronariumj (10%), Taraxacum type e (15%), Anthemis type e (12%), Quercus sp. i (11%) | Rubus sp. k, Eucalyptus sp., Carduus type e, Trifolium type j, Cistus type a | Monofloral |
P10 | Erica sp. c (53%) | Melilotus sp. j (32%) | Asreraceae e (7%), Brassica type b (5%), | Apiaceae d, Rosaceae k, Carduus type e, Asparagus type p, Alluim sp. h, Rubus sp. k | Monofloral |
P11 | Cistus type a (47%) | Liliaceae (44%) | Carduus type e (9%) | / | Monofloral |
P12 | Brassica type b (71%) | Apiaceae d (26%) | / | Carduus type e | Monofloral |
P13 | Aster type e (52%) | Cistus type a (23%) | Erica sp. c (12%), Quercus sp. i (10%) | Asparagus type p, Anthemis type e, Taraxacum type e, Fabaceae j | Monofloral |
P14 | / | Oleaceae l (39%), Tamarix sp. f (29%) | Quercus sp. i (8%), Lamiaceae g (9%), Brassica type b (5%), Centaurea sp. e (7%) | Carduus type e, Taraxacum type e, Plantago sp. q, Trifolium pratanse j, Eucalyptus sp. o, Genista type j, Melilotus sp. j | Polyfloral |
P15 | / | Artemesia sp. e (37%), Brassica type b (21%), Helianthus annuus e (41%) | Alluim sp. h (4%) | Trifolium repens j, Cistus type a, Rosaceae k, Tamarix sp. f, Chenopodiaceae, Apiaceae d | Polyfloral |
Sample | Total Phenolic Content (TPC) (mgGAE/g) | Total Flavonoid Content (TFC) (mg QE/g) | DPPH Radical Scavenging Assay (IC50) (mg/mL) | Total Antioxidant Capacity (TAC) (EAA mg/100 g) | Reducing Power (FRAP) (EC 50) (mg/mL) |
---|---|---|---|---|---|
P1 | 12.37 ± 0.19 b,c | 2.80 ± 0.33 c,d | 0.26 ± 0.01 a,b | 401.52 ± 1.13 d,e | 0.12 ± 0.02 c,d |
P2 | 23.49 ± 1.48 i | 2.99 ± 0.02 d | 0.34 ± 0.04 a,b,c | 465.56 ± 25.63 g | 0.09 ± 0.00 a,b |
P3 | 19.69 ± 0.69 i | 2.95 ± 0.07 d | 0.52 ± 0.01 d,e,f | 262.17 ± 3.41 a | 0.06 ± 0.00 a |
P4 | 19.05 ± 1.90 h,i | 1.70 ± 0.05 a,b | 0.25 ± 0.03 a,b | 612.54 ± 5.12 i | 0.09 ± 0.00 a,b |
P5 | 15.91 ± 0.64 e,f,g | 4.74 ± 0.24 f,g | 0.67 ± 0.05 f | 672.36 ± 3.41 j | 0.10 ± 0.00 b,c |
P6 | 13.69 ± 0.50 c,d,e | 2.43 ± 0.05 c,d | 0.42 ± 0.00 b,c,d,e | 246.56 ± 10.25 a | 0.13 ± 0.00 c,d |
P7 | 17.09 ± 0.32 g,h | 3.92 ± 0.24 e | 0.50 ± 0.04 b,c,d,e,f | 595.96 ± 6.83 i | 0.12 ± 0.00 a,b |
P8 | 17.18 ± 0.27 f,g | 1.77 ± 0.21 a,b | 0.38 ± 0.01 a,b,c | 373.26 ± 5.12 c,d | 0.13 ± 0.01 c,d |
P9 | 14.70 ± 0.37 c,d,e,f | 5.57 ± 0.27 h | 0.53 ± 0.00 d,e,f | 551.92 ± 1.13 h | 0.12 ± 0.00 b,c,d |
P10 | 14.87 ± 1.02 d,e,f | 4.28 ± 0.31 e,f | 0.58 ± 0.05 e,f | 592.03 ± 8.54 i | 0.13 ± 0.01 d |
P11 | 8.28 ± 0.67 a | 2.94 ± 0.10 d | 1.12 ± 0.15 g | 354.46 ± 6.83 b,c | 0.29 ± 0.00 f |
P12 | 13.42 ± 0.30 c,d | 3.74 ± 0.33 e | 0.21 ± 0.00 a | 677.14 ± 12.81 j | 0.07 ± 0.00 a |
P13 | 7.72 ± 0.29 a | 1.48 ± 0.00 a | 0.67 ± 0.07 f | 421.12 ± 8.54 e,f | 0.20 ± 0.00 e |
P14 | 11.05 ± 0.08 b | 4.98 ± 0.09 g,h | 0.63 ± 0.01 f | 433.08 ± 17.09 f | 0.15 ± 0.01 d |
P15 | 8.52 ± 0.08 a | 2.28 ± 0.03 b,c | 0.99 ± 0.08 g | 330.19 ± 5.98 b | 0.18 ± 0.01 e |
Average | 14.32 | 3.26 | 0.54 | 476.24 | 0.12 |
Sample | p-Coumaric Acid | Rutin | Myricetin | Resveratrol | Naringenin | Kaempferol |
---|---|---|---|---|---|---|
P1 | Not detected | 124.8 | 995.4 | 186.2 | 177.1 | 37.0 |
P2 | Not detected | 103.8 | 532.1 | 59.6 | 84.5 | 39.5 |
P3 | Not detected | 488.1 | 2081.7 | 377.7 | 7.6 | 62.0 |
P4 | 89.0 | 48.1 | 255.1 | 291.2 | 161.0 | 347.6 |
P5 | 77.6 | 38.3 | 36.1 | 453.4 | 488.7 | 11.5 |
P6 | 40.9 | 613.1 | 89.9 | 255.2 | 112.1 | 5.4 |
P7 | Not detected | 187.0 | 977.2 | 69.7 | 102.1 | 4.6 |
P8 | 23.2 | 12.9 | 56.7 | 160.6 | 625.9 | 90.8 |
P9 | 32.8 | 1052.7 | 2062.1 | 48.4 | 1418.1 | 172.4 |
P10 | 64.8 | 23.8 | 52.8 | 156.3 | 220.8 | 21.8 |
P11 | Not detected | 32.2 | 10.5 | 8.4 | 705.9 | 6.6 |
P12 | 130.3 | 496.3 | 883.4 | 413.1 | 205.6 | 67.0 |
P13 | 3.9 | 71.1 | 163.2 | 122.7 | 192.5 | 17.2 |
P14 | Not detected | 361.2 | 696.2 | 149.3 | 193.3 | 22.7 |
P15 | Not detected | 11.4 | 26.7 | 149.2 | 97.8 | 13.7 |
Average | 31.3 | 303.3 | 700.1 | 191.5 | 354.6 | 53.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulfous, N.; Belattar, H.; Ambra, R.; Pastore, G.; Ghorab, A. Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria. Antioxidants 2025, 14, 291. https://doi.org/10.3390/antiox14030291
Boulfous N, Belattar H, Ambra R, Pastore G, Ghorab A. Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria. Antioxidants. 2025; 14(3):291. https://doi.org/10.3390/antiox14030291
Chicago/Turabian StyleBoulfous, Nassiba, Hakima Belattar, Roberto Ambra, Gianni Pastore, and Asma Ghorab. 2025. "Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria" Antioxidants 14, no. 3: 291. https://doi.org/10.3390/antiox14030291
APA StyleBoulfous, N., Belattar, H., Ambra, R., Pastore, G., & Ghorab, A. (2025). Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria. Antioxidants, 14(3), 291. https://doi.org/10.3390/antiox14030291