Supplementation with Polyphenols (Olive and Grape Extracts) Improves Pregnancy Outcomes in Underfed Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics, Animals, and General Management
2.2. Analysis of Blood and Colostrum Samples
2.3. Statistical Analysis
3. Results
3.1. Maternal Traits
3.1.1. Changes in Maternal BW and BCS over Time of Pregnancy
3.1.2. Assessment of Maternal Antioxidant/Oxidative Status at 140 Days of Pregnancy
3.1.3. Assessment of Maternal Metabolic Biomarkers
3.1.4. Assessment of Colostrum Composition
3.2. Newborn Traits
3.2.1. Birth Weight
3.2.2. Body Size at Birth
4. Discussion
4.1. Changes in Maternal Body Weight, Body Condition, and Metabolic Status
4.2. Changes in Newborn Lambs’ Body Weight and Size
4.3. Changes in Colostrum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iniguez, L. The challenges of research and development of small ruminant production in dry areas. Small Rumin. Res. 2011, 98, 12–20. [Google Scholar] [CrossRef]
- Sun, Y.; Angerer, J.P.; Hou, J. Effects of grazing systems on herbage mass and liveweight gain of Tibetan sheep in Eastern Qinghai-Tibetan Plateau, China. Rangel. J. 2015, 37, 181–190. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Atlagich, M.; Araneda, O.; García, C.; Muñoz, A.; De los Reyes, M.; Urquieta, B. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: Comparative study in high and low altitude native sheep. Reprod. Fertil. Dev. 2011, 23, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Hypoxia and oxidative stress are associated with reduced fetal growth in twin and undernourished sheep pregnancies. Animals 2018, 8, 217. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Sales, F.; Peralta; De los Reyes, M.; González-Bulnes, A. Oxidative stress and fetal growth restriction set up earlier in undernourished sheep twin pregnancies: Prevention with antioxidant and nutritional supplementation. Antioxidants 2022, 11, 1287. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Sales, F.; Peralta, O.A.; Narbona, E.; Lira, R.; De los Reyes, M.; González-Bulnes, A. Supplementation of underfed twin-bearing ewes with herbal vitamins C and E: Impacts on birth weight, postnatal growth, and pre-weaning survival of the lambs. Animals 2020, 10, 652. [Google Scholar] [CrossRef]
- Análisis del Consumo en la Unión Europea. Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España. Available online: https://www.mapa.gob.es/en/alimentacion/temas/consumo-tendencias/cap_02_tcm38-89428.pdf (accessed on 17 January 2025).
- Mili, S.; Bouhaddane, M. Forecasting global developments and challenges in olive oil supply and demand: A Delphi survey from Spain. Agriculture 2021, 11, 191. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Netzer, Y.Y. Long-term trends of global wine market. Agriculture 2023, 13, 224. [Google Scholar] [CrossRef]
- Dahdouh, A.; Khay, I.; Le Brech, Y.; El Maakoul, A.; Bakhouya, M. Olive oil industry: A review of waste stream composition, environmental impacts, and energy valorization paths. Environ. Sci. Pollut. Res. 2023, 30, 45473–45497. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Gomes, A.; Peres, J.A.; Lucas, M.S. Winery Wastewater: Challenges and Perspectives. Eng. Proc. 2023, 56, 267. [Google Scholar]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Evtuguin, D.; Aniceto, J.P.S.; Marques, R.; Portugal, I.; Silva, C.M.; Serafim, L.S.; Xavier, A.M.R.B. Obtaining value from wine wastes: Paving the way for sustainable development. Fermentation 2024, 10, 24. [Google Scholar] [CrossRef]
- Waqas, M.; Salman, M.; Sharif, M.S. Application of polyphenolic compounds in animal nutrition and their promising effects. J. Anim. Feed Sci. 2023, 32, 233–256. [Google Scholar] [CrossRef]
- Makri, S.; Kafantaris, I.; Savva, S.; Ntanou, P.; Stagos, D.; Argyroulis, I.; Kotsampasi, B.; Christodoulou, V.; Gerasopoulos, K.; Petrotos, K.; et al. Novel feed including olive oil mill wastewater bioactive compounds enhanced the redox status of lambs. In Vivo 2018, 32, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef]
- Jian, M.; Tao, L.; Lu, L.; Yuezhang, L.; Xi, C.; Sibing, L.; Chunmei, D.; Chen, W.; Fuquan, Y.; Shangquan, G. Effects of grape seed extract supplementation on the growth performance, nutrients digestion and immunity of weaned lambs. Front. Vet. Sci. 2024, 11, 1402637. [Google Scholar]
- European Food Safety Authority (EFSA). Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of dry grape extract when used as a feed flavouring for all animal species and categories. EFSA 2016, 14, 4476. [Google Scholar]
- European Food Safety Authority (EFSA). Panel on Dietetic Products, Nutrition and Allergies (NDA). Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA 2017, 15, 4728. [Google Scholar]
- Giller, K.; Sinz, S.; Messadene-Chelali, J.; Marquardt, S. Maternal and direct dietary polyphenol supplementation affect growth, carcass and meat quality of sheep and goats. Animal 2021, 15, 100333. [Google Scholar] [CrossRef]
- Gómez, G.; Laviano, H.D.; García-Casco, J.M.; Escudero, R.; Muñoz, M.; Heras-Molina, A.; González-Bulnes, A.; Óvilo, C.; López-Bote, C.; Rey, A.I. Different effect of vitamin E or hydroxytyrosol supplementation to sow’s diet on oxidative status and performances of weaned piglets. Antioxidants 2023, 12, 1504. [Google Scholar] [CrossRef]
- Jefferies, B.C. Body condition scoring and its use in management. Tasman. J. Agric. 1961, 32, 19–21. [Google Scholar]
- NRC. Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world camelids. In National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth, and Life Studies NRC; The National Academic Press: Washington, DC, USA, 2007; pp. 244–270. [Google Scholar]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; Lira, R.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Maternal supplementation with antioxidant vitamins in sheep results in increased transfer to the fetus and improvement of fetal antioxidant status and development. Antioxidants 2019, 8, 59. [Google Scholar] [CrossRef]
- Russel, A.J.F. Means of assessing the adequacy of nutrition of pregnant ewes. Livest. Prod. Sci. 1984, 11, 429–436. [Google Scholar] [CrossRef]
- Pesántez-Pacheco, J.L.; Heras-Molina, A.; Torres-Rovira, L.; Sanz-Fernández, M.V.; García-Contreras, C.; Vázquez-Gómez, M.; Feyjoo, P.; Cáceres, E.; Frías-Mateo, M.; Hernández, F.; et al. Maternal metabolic demands caused by pregnancy and lactation: Association with productivity and offspring phenotype in high-yielding dairy ewes. Animals 2019, 9, 295. [Google Scholar] [CrossRef]
- Douglas, G.N.; Overton, T.R.; Bateman, H.G.; Dann, H.M.; Drackley, J.K. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. J. Dairy Sci. 2006, 89, 2141–2157. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; McCutcheon, S.N.; Parker, W.J.; Walsh, P.A. Blood metabolite levels in late pregnant ewes as indicators of their nutritional status. N. Z. J. Agric. Res. 1990, 33, 63–68. [Google Scholar] [CrossRef]
- Harmeyer, J.; Schlumbohm, C. Pregnancy impairs ketone body disposal in late gestating ewes: Implications for onset of pregnancy toxaemia. Res. Vet. Sci. 2006, 81, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Cal-Pereyra, L.; Benech, A.; González-Montaña, J.R.; Acosta-Dibarrat, J.; Da Silva, S.; Martin, A. Changes in the metabolic profile of pregnant ewes to an acute feed restriction in late gestation. N. Z. Vet. J. 2015, 63, 141–146. [Google Scholar] [CrossRef]
- Durak, M.H.; Altiner, A. Effect of energy deficiency during late pregnancy in Chios ewes on free fatty acids, hydroxybutyrate and urea metabolites. Turkish J. Vet. Anim. Sci. 2006, 30, 497–502. [Google Scholar]
- Toschi, P.; Baratta, M. Ruminant placental adaptation in early maternal undernutrition: An overview. Front. Vet. Sci. 2021, 8, 755034. [Google Scholar] [CrossRef]
- Plante-Dubé, M.; Bourassa, R.; Luimes, P.; Buczinski, S.; Castonguay, F.; Gervais, R. Peripartum energy metabolism of prolific ewes and their progeny in response to prepartum feeding and litter size. Animals 2025, 19, 101382. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.; Zhang, C.; Zhang, Z.; Song, S. Effect of intrauterine growth restriction during late pregnancy on the growth performance, blood components, immunity and anti-oxidation capability of ovine fetus. Livest. Sci. 2013, 155, 435–441. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Åanocha-Arendarczyk, N.; Malinowski, W.; Ziƒôtek, P.; Kosik-Bogacka, D. Oxidative stress in pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxidative Med. Cell. Longev. 2014, 2024, 358375. [Google Scholar] [CrossRef]
- Gundersen, K.; Anas, M. Developmental programming and postnatal modulations of muscle development in ruminants. Biology 2025, 14, 929. [Google Scholar] [CrossRef] [PubMed]
- Chavatte-Palmer, P.; Dupont, C.; Debus, N.; Camous, S. Nutritional programming and the reproductive function of the offspring. Anim. Prod. Sci. 2014, 54, 1166–1176. [Google Scholar] [CrossRef]
- Yawno, T.; Sutherland, A.E.; Pham, Y.; Castillo-Melendez, M.; Jenkin, G.; Miller, S.L. Fetal growth restriction alters cerebellar development in fetal and neonatal sheep. Front. Physiol. 2019, 10, 560. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Nawito, M.F.; Hameed, A.R.; Sosa, A.S.; Mahmoud, K.G. Impact of pregnancy and nutrition on oxidant/antioxidant balance in sheep and goats reared in South Sinai, Egypt. Vet. World 2016, 9, 801–805. [Google Scholar] [CrossRef]
- Guimarães, L.J.; Da Silva, I.G.; Sena, G.C.; Lourenço, G.; Azoia, I.P.; Simonelli, S.M.; Rego, F.C.D.A.; Damasceno, D.C.; Zundt, M. Annatto concentrate reduces oxidative stress in ewes during metabolic challenge stages. Anim. Feed Sci. Technol. 2025, 325, 116353. [Google Scholar] [CrossRef]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Osgerby, J.C.; Wathes, D.C.; Howard, D.; Gadd, T.S. The effect of maternal undernutrition on ovine fetal growth. Int. J. Endocrinol. 2002, 173, 131–141. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef]
- Freetly, H.C.; Leymaster, K.A. Relationship between litter birth weight and litter size in six breeds of sheep. J. Anim. Sci. 2004, 82, 612–618. [Google Scholar] [CrossRef]
- Wilson, C.S.; Cherry, N.L.; Taylor, J.B. Lamb survivability: A new approach to an old problem. Front. Anim. Sci. 2025, 6, 1497380. [Google Scholar] [CrossRef]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, O.; Durak, I. Role of oxidative stress in intrauterine growth restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef]
- Gupta, P.; Narang, M.; Banerjee, B.D.; Basu, S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: A case control study. BMC Pediatr. 2004, 4, 14. [Google Scholar] [CrossRef]
- Kamath, U.; Rao, G.; Kamath, S.U.; Rai, L. Maternal and fetal indicators of oxidative stress during intrauterine growth retardation (IUGR). Indian J. Clin. Biochem. 2006, 21, 111–115. [Google Scholar] [CrossRef]
- Vazquez-Gomez, M.; Heras-Molina, A.; Garcia-Contreras, C.; Pesantez-Pacheco, J.L.; Torres-Rovira, L.; Martinez-Fernandez, B.; Gonzalez, J.; Encinas, T.; Astiz, S.; Ovilo, C.; et al. Polyphenols and IUGR pregnancies: Effects of maternal hydroxytyrosol supplementation on postnatal growth, metabolism and body composition of the offspring. Antioxidants 2019, 8, 535. [Google Scholar] [CrossRef]
- Besufkad, S.; Abebe, A.; Getachew, T.; Goshme, S.; Bisrat, A.; Abebe, A.; Zewdie, T.; Alemayehu, L.; Kebede, A.; Gizaw, S. Survival analysis of genetic and non-genetic factors influencing lamb survival of different sheep breeds. Small Rumin. Res. 2024, 232, 107206. [Google Scholar] [CrossRef]
- Qin, Q.; Dai, D.; Zhang, C.; Zhao, C.; Liu, Z.; Xu, X.; Lan, M.; Wang, Z.; Zhang, Y.; Su, R.; et al. Identification of body size characteristic points based on the Mask R-CNN and correlation with body weight in Ujumqin sheep. Front. Vet. Sci. 2022, 9, 995724. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Immunoglobulin G content and colostrum composition of different goat and sheep breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5549. [Google Scholar] [CrossRef]
- Turín, J.; Sales, F.; Peralta, O.A.; De los Reyes, M.; Borie, C.; Carrasco, A.; González-Bulnes, A.; Parraguez, V.H. Colostrum traits and newborn body weight and growth: Comparison between single and twin underfed sheep pregnancies. Front. Vet. Sci. 2023, 10, 1256989. [Google Scholar] [CrossRef]
- Abecia, J.A.; Garrido, C.; Gave, M.; García, A.I.; López, D.; Luis, S.; Valares, J.A.; Mata, L. Exogenous melatonin and male foetuses improve the quality of sheep colostrum. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1305–1309. [Google Scholar] [CrossRef]
- Mehmood, N.; Hussain, T.; Hameed, A.; Yaseen, A.; Ahmed, A.; Hussain, M.; Al Jbawi, E. Prospective effect of vitamin E and selenium supplementation on colostrum quality in Beetal goats. Cogent Food Agric. 2023, 9, 2197711. [Google Scholar] [CrossRef]
- Long, S.; Wu, D.; He, T.; Piao, X. Dietary supplementation with Forsythia suspensa extract during late gestation improves reproductive performance, colostrum composition, antioxidant status, immunoglobulin, and inflammatory cytokines in sows and newborn piglets. Anim. Feed Sci. Technol. 2021, 271, 114700. [Google Scholar] [CrossRef]



| Singles | Twins | Rank | AOx | |||
|---|---|---|---|---|---|---|
| Variable | Con | AOx | Con | AOx | p-Value | p-Value |
| BHB (mmol/L) | 0.55 ± 0.04 | 0.64 ± 0.06 | 1.09 ± 0.26 | 0.69 ± 0.06 | 0.026 | 0.528 |
| Glucose (mg/dL) | 67.7 ± 3.3 | 69.0 ± 3.2 | 83.8 ± 12.7 | 69.5 ± 2.73 | 0.205 | 0.454 |
| Lactate (mg/dL) | 11.2 ± 1.7 | 14.7 ± 1.8 | 17.5 ± 4.4 | 18.40 ± 3.4 | 0.057 | 0.234 |
| NEFAs (mmol/L) | 0.55 ± 0.07 | 0.38± 0.04 | 1.15 ± 0.31 | 0.71 ± 0.13 | 0.004 | 0.227 |
| Trig (mg/dL) | 27.1 ± 1.9 | 29.5 ± 2.8 | 33.1 ± 4.2 | 30.6 ± 2.6 | 0.218 | 0.717 |
| Total protein (g/dL) | 7.25 ± 0.17 | 7.25 ± 0.23 | 7.20 ± 0.34 | 7.10 ±0.16 | 0.591 | 0.966 |
| Urea (mg/dL) | 27.2 ± 1.8 | 28.4 ± 3.0 | 31.1 ± 3.3 | 32.0 ± 2.3 | 0.117 | 0.500 |
| Singles | Twins | Rank | AOx | |||
|---|---|---|---|---|---|---|
| Variable | Con | AOx | Con | AOx | p-Value | p-Value |
| Fat (%) | 8.75 ± 2.24 | 11.29 ± 1.09 | 11.84 ± 0.06 | 10.41 ± 1.05 | 0.688 | 0.449 |
| Protein (%) | 12.87 ± 0.59 | 10.46 ± 1.79 | 11.96 ± 12.7 | 13.16 ± 2.87 | 0.597 | 0.752 |
| Lactose (%) | 3.43 ± 0.14 | 3.58 ± 0.21 | 3.43 ± 0.72 | 3.05 ± 0.45 | 0.302 | 0.756 |
| TS (%) | 27.50 ± 2.38 | 27.60 ± 2.10 | 29.31 ± 7.64 | 29.79 ± 3.05 | 0.474 | 0.960 |
| NFS (%) | 17.54 ± 0.69 | 15.23 ± 1.73 | 16.79 ± 6.70 | 17.50 ± 2.64 | 0.656 | 0.688 |
| Singles | Twins | Rank | AOx | |||
|---|---|---|---|---|---|---|
| Variable | Con | AOx | Con | AOx | p-Value | p-Value |
| Nose–tail length (cm) | 54.3 ± 1.4 | 53.7 ± 2.2 | 53.0± 0.8 | 53.9 ± 1.2 | 0.747 | 0.864 |
| Forelimb length (cm) | 32.8 ± 0.6 | 33.0 ± 0.7 | 30.8± 0.6 | 31.3± 0.7 | 0.013 | 0.821 |
| Hindlimb length (cm) | 40.2 ± 1.2 | 40.0 ± 0.1 | 35.8 ± 1.2 | 35.7 ± 0.5 | <0.001 | 0.558 |
| Thorax perimeter (cm) | 36.6 ± 1.4 | 37.3 ± 1.2 | 33.1 ± 1.0 | 35.3 ± 0.5 | 0.474 | 0.096 |
| Abdomen perimeter (cm) | 32.1 ± 1.8 | 34.3 ± 1.7 | 27.8 ± 1.03 | 31.8 ± 0.7 | 0.029 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesántez, J.L.; Martínez-Ros, P.; González-Bulnes, A.; López-Mendoza, M.C.; Sales, F.; Hashem, N.M.; Reyes, M.D.l.; Raggi, L.A.; Yeste-Vizcaíno, N.; Parraguez, V.H. Supplementation with Polyphenols (Olive and Grape Extracts) Improves Pregnancy Outcomes in Underfed Sheep. Antioxidants 2025, 14, 1489. https://doi.org/10.3390/antiox14121489
Pesántez JL, Martínez-Ros P, González-Bulnes A, López-Mendoza MC, Sales F, Hashem NM, Reyes MDl, Raggi LA, Yeste-Vizcaíno N, Parraguez VH. Supplementation with Polyphenols (Olive and Grape Extracts) Improves Pregnancy Outcomes in Underfed Sheep. Antioxidants. 2025; 14(12):1489. https://doi.org/10.3390/antiox14121489
Chicago/Turabian StylePesántez, José Luis, Paula Martínez-Ros, Antonio González-Bulnes, M. Carmen López-Mendoza, Francisco Sales, Nesrein M. Hashem, Mónica De los Reyes, Luis A. Raggi, Natalia Yeste-Vizcaíno, and Víctor H. Parraguez. 2025. "Supplementation with Polyphenols (Olive and Grape Extracts) Improves Pregnancy Outcomes in Underfed Sheep" Antioxidants 14, no. 12: 1489. https://doi.org/10.3390/antiox14121489
APA StylePesántez, J. L., Martínez-Ros, P., González-Bulnes, A., López-Mendoza, M. C., Sales, F., Hashem, N. M., Reyes, M. D. l., Raggi, L. A., Yeste-Vizcaíno, N., & Parraguez, V. H. (2025). Supplementation with Polyphenols (Olive and Grape Extracts) Improves Pregnancy Outcomes in Underfed Sheep. Antioxidants, 14(12), 1489. https://doi.org/10.3390/antiox14121489

