Effects of Short-Term Feeding of Resveratrol on Growth Performance, Meat Quality, Antioxidant Capacity, Serum Biochemical Parameters and Intestinal Health in Yellow-Feathered Broilers Under Dexamethasone-Induced Oxidative Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diet, and Management
2.2. Sample Collection
2.3. Growth Performance Measurement
2.4. Antioxidant Capacity Assessment
2.5. Serum Biochemical Parameters
2.6. Meat Quality Evaluation
2.7. Intestinal Morphology Analysis
2.8. Quantitative Real-Time PCR Analysis
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemical Parameters
3.3. Antioxidant Capacity
3.4. Meat Quality
3.5. Intestinal Morphology
3.6. Relative mRNA Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bilal, R.M.; Hassan, F.U.; Farag, M.R.; Nasir, T.A.; Ragni, M.; Mahgoub, H.A.M.; Alagawany, M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. J. Therm. Biol. 2021, 99, 102944. [Google Scholar] [CrossRef] [PubMed]
- Vandana, G.D.; Sejian, V.; Lees, A.M.; Pragna, P.; Silpa, M.V.; Maloney, S.K. Heat stress and poultry production: Impact and amelioration. Int. J. Biometeorol. 2021, 65, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, D.J.; Luthra, K.; Liang, Y.; Christensen, K.; Watkins, S.E.; Scanes, C.G. Thermal Micro-Environment during Poultry Transportation in South Central United States. Animals 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Jha, R. Oxidative Stress in the Poultry Gut: Potential Challenges and Interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Li, F. Effects of glucocorticoids on the gene expression of nutrient transporters in different rabbit intestinal segments. Animal 2020, 14, 1693–1700. [Google Scholar] [CrossRef]
- Nanto-Hara, F.; Ohtsu, H.; Yamazaki, M.; Hirakawa, T.; Sato, K.; Murakami, H. Effects of Dietary Brown Rice on the Growth Performance, Systemic Oxidative Status, and Splenic Inflammatory Responses of Broiler Chickens under Chronic Heat Stress. J. Poult. Sci. 2021, 58, 154–162. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef]
- Meka, R.R.; Venkatesha, S.H.; Acharya, B.; Moudgil, K.D. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine 2019, 14, 1455–1469. [Google Scholar] [CrossRef]
- King, E.M.; Chivers, J.E.; Giembycz, M.A.; Newton, R. A Role for Transactivation in the Repression of Inflammatory Genes by Dexamethasone. In C67. Translational ‘OMICS’ Discoveries in Lung Disease; American Thoracic Society: New York, NY, USA, 2012; p. A4909. [Google Scholar]
- Malkawi, A.K.; Alzoubi, K.H.; Jacob, M.; Matic, G.; Ali, A.; Al Faraj, A.; Almuhanna, F.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics Based Profiling of Dexamethasone Side Effects in Rats. Front. Pharmacol. 2018, 9, 46. [Google Scholar] [CrossRef]
- Luan, G.; Li, G.; Ma, X.; Jin, Y.; Hu, N.; Li, J.; Wang, Z.; Wang, H. Dexamethasone-Induced Mitochondrial Dysfunction and Insulin Resistance-Study in 3T3-L1 Adipocytes and Mitochondria Isolated from Mouse Liver. Molecules 2019, 24, 1982. [Google Scholar] [CrossRef] [PubMed]
- El-Senousey, H.K.; Chen, B.; Wang, J.Y.; Atta, A.M.; Mohamed, F.R.; Nie, Q.H. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone. Poult. Sci. 2018, 97, 30–38. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Li, S.; Liu, X.; Li, Y.; Wang, Y.; Niu, Y.; Ren, Z.; Yang, X.; Yang, X.; et al. Folic acid alleviates the negative effects of dexamethasone induced stress on production performance in Hyline Brown laying hens. Anim. Nutr. 2025, 20, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Ma, X.K.; Zhao, P.F.; Piao, X.S. Weeping forsythia extract alleviates dexamethasone-induced oxidative injury of breast muscles in broilers. Animal 2019, 13, 2660–2668. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Lin, Y.; Di, B.; Yang, G.; He, J.; Wang, C.; Guo, P. Effect of Hydrolyzed Gallotannin on Growth Performance, Immune Function, and Antioxidant Capacity of Yellow-Feather Broilers. Animals 2022, 12, 2971. [Google Scholar] [CrossRef]
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, X.; Zhang, T.; Huang, J. Positive Effects of Resveratrol on Egg-Laying Ability, Egg Quality, and Antioxidant Activity in Hens. J. Appl. Poult. Res. 2019, 28, 1099–1105. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Xiong, T.; Nie, X.; Zhang, H.; Zhu, C. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front. Microbiol. 2022, 13, 977087. [Google Scholar] [CrossRef]
- Boocock, D.J.; Faust, G.E.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Blanchard, O. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules 2014, 19, 17154–17172. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef]
- Feng, Z.H.; Gong, J.G.; Zhao, G.X.; Lin, X.; Liu, Y.C.; Ma, K.W. Effects of dietary supplementation of resveratrol on performance, egg quality, yolk cholesterol and antioxidant enzyme activity of laying hens. Br. Poult. Sci. 2017, 58, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.; Herpich, J.I.; Chitolina, G.Z.; Gava, M.S.; de Moraes, L.B.; Furian, T.Q.; Borges, K.A.; Borges Fortes, F.B.; Moraes, H.L.d.S.; Pippi Salle, C.T. Characterization of Immune and Enteric Systems of Broilers after Imunosupression with Dexamethasone. Acta Sci. Vet. 2018, 46, 7. [Google Scholar] [CrossRef]
- NY/T 33-2004; Feeding Standard of Chicken. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- Lv, C.; Niu, S.; Yan, S.; Bai, C.; Yu, X.; Hou, J.; Gao, W.; Zhang, J.; Zhao, Z.; Yang, C.; et al. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult. Sci. 2019, 98, 3418–3425. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Moberg, G. Biological response to stress: Implications for animal welfare. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000; pp. 1–21. [Google Scholar] [CrossRef]
- Gottardo, F.; Brscic, M.; Pozza, G.; Ossensi, C.; Contiero, B.; Marin, A.; Cozzi, G. Administration of dexamethasone per os in finishing bulls. I. Effects on productive traits, meat quality and cattle behaviour as indicator of welfare. Animal 2008, 2, 1073–1079. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Shi, S.; Zhou, Y.; Zhang, K.; Wang, Y.; Zhao, J. Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poult. Sci. 2022, 101, 102036. [Google Scholar] [CrossRef]
- Osho, S.O.; Adeola, O. Chitosan oligosaccharide supplementation alleviates stress stimulated by in-feed dexamethasone in broiler chickens. Poult. Sci. 2020, 99, 2061–2067. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liu, M.; Liu, X.; Jiao, Y.; Jin, S.; Shan, A.; Feng, X. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB Signaling Pathways. Animals 2021, 11, 3588. [Google Scholar] [CrossRef]
- Mohebodini, H.; Jazi, V.; Bakhshalinejad, R.; Shabani, A.; Ashayerizadeh, A. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livest. Sci. 2019, 229, 13–21. [Google Scholar] [CrossRef]
- He, S.; Li, S.; Arowolo, M.A.; Yu, Q.; Chen, F.; Hu, R.; He, J. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim. Sci. J. 2019, 90, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Maltin, C.A.; Warkup, C.C.; Matthews, K.R.; Grant, C.M.; Porter, A.D.; Delday, M.I. Pig muscle fibre characteristics as a source of variation in eating quality. Meat Sci. 1997, 47, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, L.; Zhao, X.; Chen, X.; Wang, L.; Geng, Z. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. J. Sci. Food Agric. 2018, 98, 1216–1221. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; He, J.; Yu, J.; Chen, J.; Chen, D. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Wang, L.; Yang, L.; Chen, X.; Geng, Z. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status. Anim. Sci. J. 2017, 88, 1569–1574. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef]
- Eid, Y.; Kirrella, A.A.; Tolba, A.; El-Deeb, M.; Sayed, S.; El-Sawy, H.B.; Shukry, M.; Dawood, M.A.O. Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period. Animals 2021, 11, 1022. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhao, X.H.; Chen, X.Y.; Yang, L.; Geng, Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poult. Sci. 2017, 96, 2219–2225. [Google Scholar] [CrossRef]
- Belinskaia, D.A.; Voronina, P.A.; Goncharov, N.V. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J. Evol. Biochem. Physiol. 2021, 57, 1419–1448. [Google Scholar] [CrossRef]
- Lopez-Giacoman, S.; Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Nie, X.; He, Z.; Xiong, T.; Li, Y.; Bai, Y.; Zhang, H. Research Note: Dietary resveratrol supplementation improves the hepatic antioxidant capacity and attenuates lipopolysaccharide-induced inflammation in yellow-feathered broilers. Poult. Sci. 2023, 102, 102370. [Google Scholar] [CrossRef] [PubMed]
- Scope, A.; Schwendenwein, I. Laboratory Evaluation of Renal Function in Birds. Vet. Clin. N. Am. Exot. Anim. Pract. 2020, 23, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Ullah, A.; Tayyeb, T.; Ullah, R.; Hanif, M.; Khan, F.; Khan, I.; Taj, R.; Syed, F.; Gul, S.; et al. Effect of Inorganic Selenium on Blood Biochemistry under Dexamethasone Induced Stress in Broiler Chicken. Sarhad J. Agric. 2024, 40, 142–148. [Google Scholar] [CrossRef]
- He, Z.; Lin, Z.; Yan, Y.; Wang, J.; Zhang, S.; Zheng, B.; Huang, X. Curcumin and selenium synergistically mitigate oxidative stress in white-feathered broilers. Front. Vet. Sci. 2025, 12, 1600466. [Google Scholar] [CrossRef]
- Saha, S.K.; Pathak, N.N. Digestion, Absorption and Metabolism of Nutrients. In Fundamentals of Animal Nutrition; Saha, S.K., Pathak, N.N., Eds.; Springer: Singapore, 2021; pp. 219–246. [Google Scholar]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Yang, C.; Luo, P.; Chen, S.-j.; Deng, Z.-c.; Fu, X.-l.; Xu, D.-n.; Tian, Y.-b.; Huang, Y.-m.; Liu, W.-j. Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress. Poult. Sci. 2021, 100, 101459. [Google Scholar] [CrossRef]
- Xiong, Y.; Cao, S.; Xiao, H.; Wu, Q.; Yi, H.; Jiang, Z.; Wang, L. Alterations in intestinal microbiota composition coincide with impaired intestinal morphology and dysfunctional ileal immune response in growing-finishing pigs under constant chronic heat stress. J. Anim. Sci. Biotechnol. 2022, 13, 1. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef]
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef]
- Nunn, A.V.W.; Bell, J.; Barter, P. The integration of lipid-sensing and anti-inflammatory effects: How the PPARs play a role in metabolic balance. Nucl. Recept. 2007, 5, 1. [Google Scholar] [CrossRef]
- Mayangsari, Y.; Suzuki, T. Resveratrol Ameliorates Intestinal Barrier Defects and Inflammation in Colitic Mice and Intestinal Cells. J. Agric. Food Chem. 2018, 66, 12666–12674. [Google Scholar] [CrossRef] [PubMed]

| Ingredients | Content (%) | Nutrient Levels | Content (%) |
|---|---|---|---|
| Corn | 70.80 | Metabolic energy (MJ/kg) | 13.04 |
| Soybean meal | 16.90 | crude protein | 17.19 |
| Corn gluten meal | 6.00 | calcium | 0.75 |
| Lard oil | 2.50 | Total phosphorus | 0.49 |
| Stone powder | 1.31 | Available phosphorus | 0.28 |
| CaHPO4 | 1.00 | lysine | 0.95 |
| Lysine (65%) | 0.60 | sulfur-containing amino acid | 0.75 |
| Salt | 0.27 | ||
| Dl-Methionine (98%) | 0.18 | ||
| Baking soda | 0.12 | ||
| Choline chloride (50%) | 0.10 | ||
| Threonine | 0.07 | ||
| Premix 1 | 0.15 | ||
| Total | 100.00 |
| Gene | Accession Number | Primer Sequences 5′→3′ | Product Size (bp) |
|---|---|---|---|
| GAPDH | NM_204305.2 | F: GGGCACGCCATCACTATCTT R: TCACAAACATGGGGGCATCA | 187 |
| SOD | NM_205064.2 | F: CCCTTTGCAGTCACATTGCC R: CCACAAGCTAAACGAGGTCCA | 198 |
| CAT | NM_001031215.2 | F: ATTCCTGAAAGAGTTGTGCAT R: TGTTCAAACACTTTCGCCTTG | 101 |
| GPX2 | NM_001277854.3 | F: CAACCAGCTGCAGGCACGCTA R: ATCTCCTCGTTGGTGCCGTT | 96 |
| ZO-1 | XM_040706827.2 | F: CTTCAGGTGTTTCTCTTCCTCCTC R: CTGTGGTTTCATGGCTGGATC | 131 |
| PPAR-γ | NM_001001460.2 | F: CTCAGACAAATTGTAACGGAA R: GATAAGAACTACTATCGCCAT | 131 |
| Occludin | NM_205128.1 | F: TTCGTCATGCTCATCGCCTC R: TCCACGGTGCAGTAGTGGTA | 158 |
| Items | CON | DEX | DR1 | DR2 | DR3 | SEM 1 | p Value 2 | ||
|---|---|---|---|---|---|---|---|---|---|
| ANOVA | Linear | Quadratic | |||||||
| Days 1–5 | |||||||||
| BW1 (g) | 1527.38 | 1488.38 | 1558.88 | 1554.00 | 1564.13 | 26.41 | 0.90 | 0.44 | 0.64 |
| BW5 (g) | 1687.38 | 1411.13 | 1573.38 | 1574.88 | 1571.00 | 33.33 | 0.13 | 0.16 | 0.28 |
| ADG1–5 (g/d) | 32.00 a | −15.45 c | 2.90 b | 4.18 b | 1.38 b | 3.52 | <0.01 | 0.07 | 0.10 |
| ADFI1–5 (g/d) | 135.30 | 150.33 | 155.33 | 149.01 | 157.42 | 3.09 | 0.43 | 0.57 | 0.77 |
| FCR1–5 | 4.06 | 102.12 | 2.93 | 30.33 | −1.99 | 19.61 | 0.42 | 0.19 | 0.49 |
| Mortality (%) | 0 | 4.17 | 0 | 4.17 | 4.17 | ||||
| Days 6–14 | |||||||||
| BW6 (g) | 1687.66 | 1410.20 | 1573.66 | 1574.11 | 1570.86 | 32.86 | 0.13 | 0.16 | 0.28 |
| BW14 (g) | 2140.00 a | 1770.50 b | 1940.25 b | 1926.90 b | 1887.13 b | 36.76 | 0.02 | 0.34 | 0.19 |
| ADG6–14 (g/d) | 50.29 | 39.93 | 40.76 | 39.11 | 35.13 | 1.92 | 0.14 | 0.41 | 0.58 |
| ADFI6–14 (g/d) | 171.37 a | 152.13 b | 150.40 b | 147.02 b | 140.96 b | 3.00 | 0.01 | 0.17 | 0.71 |
| FCR6–14 | 3.51 | 4.25 | 3.97 | 4.12 | 4.34 | 0.20 | 0.73 | 0.85 | 0.62 |
| Mortality (%) | 0 | 2.08 | 0 | 0 | 0 | ||||
| Days 1–14 | |||||||||
| ADG1–14 (g/d) | 43.76 a | 20.15 c | 27.24 b | 26.64 b | 23.07 bc | 1.55 | <0.01 | 0.36 | 0.01 |
| ADFI1–14 (g/d) | 158.49 a | 151.48 ab | 152.16 ab | 147.73 ab | 146.84 b | 1.37 | 0.05 | 0.17 | 0.79 |
| FCR1–14 | 3.68 c | 7.95 a | 5.74 b | 5.84 b | 6.75 ab | 0.32 | <0.01 | 0.20 | 0.01 |
| Mortality (%) | 0 | 6.25 | 0 | 4.17 | 4.17 | ||||
| Items | CON | DEX | DR1 | DR2 | DR3 | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|
| ANOVA | Linear | Quadratic | |||||||
| Day 6 1 | |||||||||
| CS (ng/L) | 0.27 d | 0.58 a | 0.43 c | 0.45 bc | 0.51 b | 0.01 | <0.01 | <0.01 | <0.01 |
| Day 14 | |||||||||
| CS (ng/L) | 0.30 c | 0.55 a | 0.46 b | 0.51 ab | 0.46 b | 0.01 | <0.01 | <0.01 | 0.11 |
| TP (g/L) | 38.14 ab | 36.39 b | 39.78 ab | 40.76 a | 41.46 a | 0.99 | <0.01 | <0.01 | 0.20 |
| ALB (g/L) | 17.68 ab | 16.65 b | 18.93 a | 18.56 a | 17.90 ab | 0.44 | 0.01 | 0.13 | <0.01 |
| GLB (g/L) | 20.46 | 19.74 | 20.85 | 22.20 | 23.56 | 0.95 | 0.06 | <0.01 | 0.90 |
| A/G | 0.88 | 0.85 | 0.94 | 0.85 | 0.77 | 0.046 | 0.21 | 0.16 | 0.10 |
| Cr (μmol/L) | 2.38 | 3.12 | 1.88 | 2.50 | 4.00 | 0.53 | 0.10 | 0.24 | 0.03 |
| BUN (mmol/L) | 0.50 b | 0.68 a | 0.51 b | 0.41 b | 0.44 b | 0.03 | <0.01 | <0.01 | <0.01 |
| Glu (mmol/L) | 10.19 | 10.86 | 10.25 | 10.49 | 10.32 | 0.29 | 0.51 | 0.29 | 0.44 |
| Items | CON | DEX | DR1 | DR2 | DR3 | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|
| ANOVA | Linear | Quadratic | |||||||
| Serum | |||||||||
| MDA (ng/L) | 2.26 | 3.92 | 2.30 | 2.92 | 2.88 | 0.57 | 0.31 | 0.41 | 0.24 |
| SOD (U/mL) | 183.52 a | 165.84 b | 172.00 b | 179.29 a | 172.83 b | 2.44 | <0.01 | 0.01 | 0.01 |
| CAT (U/mL) | 9.49 | 8.85 | 12.90 | 13.23 | 12.67 | 2.13 | 0.46 | 0.21 | 0.27 |
| GSH-Px (U/mL) | 1903.28 b | 1664.75 b | 2883.20 a | 2150.41 b | 2152.87 b | 116.61 | <0.01 | 0.26 | <0.01 |
| Liver | |||||||||
| MDA (ng/L) | 2.59 b | 4.94 a | 3.42 ab | 3.77 ab | 4.12 ab | 0.38 | 0.01 | 0.35 | 0.07 |
| SOD (U/mL) | 36.08 c | 33.94 c | 48.31 a | 40.40 b | 43.04 b | 1.19 | <0.01 | <0.01 | <0.01 |
| CAT (U/mL) | 12.69 a | 8.43 b | 12.56 a | 11.79 a | 10.61 ab | 0.56 | <0.01 | 0.09 | 0.10 |
| GSH-Px (U/mL) | 61.71 b | 51.58 b | 73.76 a | 64.38 ab | 66.94 ab | 3.89 | <0.01 | 0.06 | 0.03 |
| Thigh muscle | |||||||||
| MDA (ng/L) | 5.28 b | 8.26 a | 8.03 a | 5.53 ab | 5.08 b | 0.66 | <0.01 | <0.01 | 0.87 |
| SOD (U/mL) | 73.37 a | 58.95 b | 83.53 a | 84.30 a | 79.82 a | 2.75 | <0.01 | <0.01 | <0.01 |
| CAT (U/mL) | 25.87 a | 16.88 b | 26.45 a | 29.66 a | 25.46 a | 1.86 | <0.01 | <0.01 | <0.01 |
| GSH-Px (U/mL) | 17.10 a | 8.24 b | 18.46 a | 16.18 a | 15.18 a | 1.19 | <0.01 | <0.01 | <0.01 |
| Items | CON | DEX | DR1 | DR2 | DR3 | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|
| ANOVA | Linear | Quadratic | |||||||
| Duodenum | |||||||||
| MDA (nmol/mg prot) | 0.12 b | 0.51 a | 0.27 ab | 0.27 ab | 0.31 ab | 0.04 | <0.01 | 0.08 | 0.06 |
| SOD (U/mg prot) | 17.37 b | 17.07 ab | 18.17 ab | 19.30 ab | 19.58 a | 0.50 | 0.02 | 0.01 | 0.51 |
| Jejunum | |||||||||
| MDA (nmol/mg prot) | 0.24 b | 0.41 a | 0.23 b | 0.22 b | 0.20 b | 0.03 | <0.01 | <0.01 | <0.01 |
| SOD (U/mg prot) | 17.37 | 19.93 | 18.22 | 18.86 | 20.11 | 0.73 | 0.20 | 0.80 | 0.16 |
| Ileum | |||||||||
| MDA (nmol/mg prot) | 0.13 b | 0.52 a | 0.20 b | 0.39 ab | 0.29 ab | 0.05 | <0.01 | 0.14 | 0.13 |
| SOD (U/mg prot) | 18.21 | 17.92 | 18.35 | 19.94 | 19.12 | 0.47 | 0.14 | 0.09 | 0.35 |
| Items | CON | DEX | DR1 | DR2 | DR3 | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|
| ANOVA | Linear | Quadratic | |||||||
| Thigh muscle | |||||||||
| a* | 8.08 a | 5.98 b | 7.33 ab | 7.45 ab | 7.60 a | 0.35 | <0.01 | <0.01 | 0.14 |
| b* | 11.31 a | 7.56 c | 9.35 b | 8.73 bc | 9.59 b | 0.30 | <0.01 | <0.01 | 0.19 |
| L* | 54.75 ab | 53.37 b | 54.64 ab | 55.09 a | 54.01 ab | 0.33 | 0.01 | 0.15 | <0.01 |
| pH45min | 6.53 b | 6.79 a | 6.42 b | 6.52 b | 6.47 b | 0.06 | <0.01 | <0.01 | 0.02 |
| pH24h | 5.89 c | 5.99 ab | 5.94 bc | 6.02 a | 5.94 bc | 0.02 | <0.01 | 0.42 | 0.36 |
| Drip loss (%) | 2.62 ab | 3.02 a | 2.16 b | 2.26 b | 2.14 b | 0.17 | <0.01 | <0.01 | 0.05 |
| Shear force (N) | 19.77 | 19.10 | 20.88 | 20.79 | 20.31 | 1.35 | 0.89 | 0.51 | 0.35 |
| Pectoralis | |||||||||
| a* | 10.69 a | 8.88 c | 10.47 ab | 8.78 c | 9.16 bc | 0.34 | <0.01 | 0.58 | 0.10 |
| b* | 10.26 a | 8.07 b | 9.47 ab | 9.17 ab | 10.08 a | 0.37 | <0.01 | <0.01 | 0.57 |
| L* | 53.66 a | 51.39 b | 54.31 a | 54.73 a | 54.88 a | 0.49 | <0.01 | <0.01 | 0.01 |
| pH45min | 6.41 ab | 6.43 a | 6.32 bc | 6.35 ac | 6.28 c | 0.02 | <0.01 | <0.01 | 0.33 |
| pH24h | 6.23 | 6.28 | 6.29 | 6.23 | 6.20 | 0.03 | 0.23 | 0.02 | 0.35 |
| Drip loss (%) | 1.43 | 1.65 | 1.66 | 1.74 | 1.64 | 0.13 | 0.56 | 0.90 | 0.71 |
| Shear force (N) | 18.91 | 22.31 | 19.75 | 21.13 | 18.64 | 0.99 | 0.07 | 0.04 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Wang, Y.; Zhu, H.; Huang, C.; Wang, W.; Jia, Y.; Hu, Z.; Zhou, H.; Liang, S.; Ling, C.; et al. Effects of Short-Term Feeding of Resveratrol on Growth Performance, Meat Quality, Antioxidant Capacity, Serum Biochemical Parameters and Intestinal Health in Yellow-Feathered Broilers Under Dexamethasone-Induced Oxidative Stress. Antioxidants 2025, 14, 1459. https://doi.org/10.3390/antiox14121459
Ye H, Wang Y, Zhu H, Huang C, Wang W, Jia Y, Hu Z, Zhou H, Liang S, Ling C, et al. Effects of Short-Term Feeding of Resveratrol on Growth Performance, Meat Quality, Antioxidant Capacity, Serum Biochemical Parameters and Intestinal Health in Yellow-Feathered Broilers Under Dexamethasone-Induced Oxidative Stress. Antioxidants. 2025; 14(12):1459. https://doi.org/10.3390/antiox14121459
Chicago/Turabian StyleYe, Hui, Yangyu Wang, Huilan Zhu, Chao Huang, Weiwei Wang, Yifan Jia, Zhaoheng Hu, Huiyun Zhou, Shujie Liang, Chong Ling, and et al. 2025. "Effects of Short-Term Feeding of Resveratrol on Growth Performance, Meat Quality, Antioxidant Capacity, Serum Biochemical Parameters and Intestinal Health in Yellow-Feathered Broilers Under Dexamethasone-Induced Oxidative Stress" Antioxidants 14, no. 12: 1459. https://doi.org/10.3390/antiox14121459
APA StyleYe, H., Wang, Y., Zhu, H., Huang, C., Wang, W., Jia, Y., Hu, Z., Zhou, H., Liang, S., Ling, C., Zhang, C., Dong, Z., & Zuo, J. (2025). Effects of Short-Term Feeding of Resveratrol on Growth Performance, Meat Quality, Antioxidant Capacity, Serum Biochemical Parameters and Intestinal Health in Yellow-Feathered Broilers Under Dexamethasone-Induced Oxidative Stress. Antioxidants, 14(12), 1459. https://doi.org/10.3390/antiox14121459

