Respiratory Ciliary Beat Frequency in COPD: Balancing Oxidative Stress and Pharmacological Treatment
Abstract
1. Introduction
- Group A: 0–1 moderate exacerbation in the past year and low symptom burden (Modified Medical Research Council—mMRC—Dyspnea Scale 0–1, COPD Assessment Test—CAT < 10);
- Group B: 0–1 moderate exacerbation but higher symptom burden (mMRC ≥ 2 and/or CAT ≥ 10);
- Group E: ≥2 moderate exacerbations or ≥1 leading to hospitalisation in the past year, regardless of symptom level.
- Group A: single long-acting bronchodilator—long-acting muscarinic antagonist (LAMA) or long-acting β2-agonist (LABA);
- Group B: dual bronchodilation with LAMA + LABA;
- Group E: LAMA + LABA as first choice, with LAMA + LABA + ICS recommended for patients with blood eosinophils ≥ 300 cells/μL.
2. Airway Cilia
2.1. Airway Cilia Structure
2.2. Airway Cilia Kinematics
3. Reactive Oxygen Species and Oxidative Stress
3.1. Intracellular Redox Systems of Motile Cilia
3.2. Impact of Oxidative Stress on Airway Cilia
3.2.1. Ciliation of Epithelial Cells
3.2.2. Cilia Length
3.2.3. Ciliary Orientation
3.2.4. Ciliary Cellular Components
3.2.5. Ciliary Kinetics
3.3. Impact of Oxidative Stress on Airway Mucus Secretion and Composition
3.3.1. Composition and Function of Respiratory Mucus
3.3.2. Effects of Cigarette Smoke and Inflammation on Mucin Production
3.3.3. Neurogenic Regulation and Protease Effects
3.3.4. Structural Changes in Goblet Cells and Submucosal Glands
3.3.5. Biophysical Properties of Mucus and Mucociliary Clearance Efficiency
3.4. Oxidative Stress in COPD
3.4.1. Sources of Reactive Oxygen Species in the Lungs
3.4.2. Antioxidant Defence Mechanisms
3.4.3. Pathophysiological Consequences of Oxidative Stress
3.4.4. Therapeutic Implications
3.4.5. Ciliary Dysfunction in COPD
4. Calcium Signalling
4.1. Calcium Signalling in Patients with COPD
4.2. The Role of Calcium in Ciliary Kinetics
4.3. The Role of Calcium in Muscarinic Receptor–Antagonist Signalling
4.4. The Role of Calcium in β2-Agonists Signalling
4.5. The Role of Calcium in Corticosteroid Signalling
5. Cyclic Adenosine Monophosphate Signalling and Phosphodiesterases in Patients with COPD
6. Results and Discussion
6.1. Impact of Tobacco Smoke on Respiratory Ciliary Beat Frequency
6.1.1. Smokers Without COPD
6.1.2. Smokers with COPD
6.2. Impact of Pharmacotherapy on Respiratory Ciliary Beat Frequency
- LAMA: Exhibits a direct cilia-stimulatory effect, independent of classical second messengers (Ca2+, cAMP, PKA, purinergic signalling) [13].
- LAMA + LABA: Dual bronchodilator therapy may produce additive effects on CBF.
- Triple therapy (LAMA + LABA + ICS): May enhance CBF due to LABA-mediated potentiation of ICS anti-inflammatory effects, including suppression of IL-13. However, ICS use in COPD is limited to patients with eosinophilic inflammation and carries an unfavourable side-effect profile. ICS may also upregulate β2-adrenergic receptors, thereby enhancing LABA-induced cAMP signalling and indirectly supporting CBF [162,187,188].
- Selective PDE4 inhibitor, roflumilast: By preventing cAMP degradation, promotes ciliary activity, though clinically relevant effects often require concurrent LABA administration [158]. Beyond its anti-inflammatory action, PDE4 inhibition reduces mucus gland hyperplasia and upregulates aquaporin-5 (AQP5), thereby facilitating airway hydration and normalising mucus viscosity [189]. AQP5 is among the most abundantly expressed lung aquaporins, with reduced expression linked to excessive mucus production and lung function decline in COPD [190,191,192,193,194]. This dual mechanism highlights PDE4 inhibitors as potential modulators of MCC, although gastrointestinal side effects remain a limiting factor for roflumilast use.
6.3. Clinical Aspects
- Heterogeneity of COPD populationsCOPD patients are often treated as a uniform group in studies, without consideration of pharmacotherapy. This methodological limitation may significantly affect interpretation of CBF results, particularly in studies using nasal samples [19,71,103,195], since pharmacological regimens influence ciliary function in distinct ways.
- Nasal ciliary brush samples
- ○
- Patients should not be regarded as a homogenous cohort.
- ○
- It is essential to differentiate between:
- ▪
- COPD patients without systemic therapy (receiving only inhaled bronchodilators, primarily acting in the lower airways, with negligible influence on nasal cilia).
- ▪
- COPD patients with systemic therapy (treated with PDE inhibitors, theophylline, macrolides, or systemic corticosteroids), in whom nasal ciliary activity may reflect systemic drug effects.
- ○
- Importantly, expression of PDE isoforms differs between nasal and bronchial epithelium: while PDE4A is downregulated in nasal tissue [154], other PDE4 subtypes (PDE4B, 4C, 4D) are not, suggesting tissue-specific regulatory patterns that complicate extrapolation from nasal to bronchial samples.
- Bronchial ciliary brush samples (via bronchoscopy)Stratification by pharmacotherapy is equally critical when evaluating bronchial CBF:
- ○
- Dual therapy: patients on LAMA + LABA.
- ○
- Triple inhaled therapy: patients on LAMA + LABA + corticosteroids (representing the eosinophilic phenotype).
- ○
- Combination with systemic therapy: patients receiving PDE inhibitors, theophylline, or macrolides in addition to inhaled treatment.
7. Limitations
- LAMA: While LAMA agents exhibit a direct cilia-stimulatory effect, they may simultaneously contribute to ASL dehydration, resulting in mucus thickening and an unfavourable periciliary environment for effective ciliary function [142]. However, at least one study demonstrated that tiotropium did not impair MCC while reducing HRV-induced mucin production, suggesting a clinically neutral effect on MCC [140]. Potential therapeutic targets to further restore ASL hydration include AQP5 channels or PDE4 enzyme.
- LABA: LABAs stimulate ciliary activity indirectly via the cAMP–PKA–dynein pathway. However, their efficacy depends on intact cAMP signalling, which may be compromised in COPD due to enhanced PDE activity. In addition, tolerance represents a clinical limitation; thus, LABAs are best used in combination with PDE4 inhibitors, or corticosteroids (restricted to the eosinophilic COPD phenotype). Sustained cAMP signalling is essential for long-term enhancement of CBF [16,132,158].
- Promoting a rational interpretation of CBF in clinical assessments, taking into account the modulatory effects of both inhaled and systemic therapies.
- Supporting the development of targeted treatments for COPD subtypes, particularly those characterised by neurogenic mucus hypersecretion and impaired MCC.
- Identifying novel strategies to optimise pharmacotherapy, not only to manage symptoms and prevent exacerbations but also to preserve or restore ciliary function as a key component of airway defence.
- Recognising that oxidative stress persists even in the absence of smoking, highlighting the potential for mitochondria-targeted therapies [196] as an emerging research avenue.
8. Emerging and Potential Cilia-Stimulatory Therapeutic Strategies and Clinical Implications
- A.
- Patients with neutrophil phenotype of COPD
- Mucus-targeted therapies: MicroRNAs including miR-141, miR-92a, and circZNF652 have emerged as potential regulators of mucus production [197].
- B.
- Patients with eosinophil phenotype of COPD
- Dupilumab: A human IgG4 monoclonal antibody targeting the IL-4 receptor α subunit, inhibits both IL-4 and IL-13 signalling pathways. In COPD patients with an eosinophilic phenotype, it may reduce goblet cell metaplasia and mucus hypersecretion while preserving ciliary function [201].
- Chloride channel-targeted therapies: In COPD, TMEM16A is pathologically upregulated. This increased expression promotes Ca2+-dependent mucus granule exocytosis, contributing to goblet cell hyperplasia and mucus hypersecretion. TMEM16A inhibitors represent a promising approach for patients with eosinophilic COPD phenotypes, where IL-13–driven TMEM16A induction contributes to mucus hypersecretion. By reducing MUC5AC expression and limiting goblet cell hyperplasia, these agents may alleviate mucus overproduction. Although our findings indicate that TMEM16A blockade can transiently lower CBF, this reduction did not fall below physiological thresholds, suggesting that the net impact on MCC may remain favourable in IL-13–dominated airway inflammation [202,203]. Further studies are warranted to determine whether TMEM16A inhibition can achieve an optimal balance between mucus suppression and preserved ciliary motility in clinical practice.
- T2R agonists: Bitter taste receptors (T2Rs) represent a novel class of G protein–coupled receptors expressed in the airway epithelium and airway smooth muscle. On activation, these receptors respond to bacterial products by initiating Ca2+-triggered NO production, which both directly kills bacteria and enhances MCC. NO stimulates cGMP synthesis and activates protein kinase G, leading to phosphorylation of ciliary proteins and an increase in CBF [33,204,205]. In airway smooth muscle, T2R agonists induce relaxation and reduce airway tone, offering an alternative to conventional β2-agonists. Importantly, T2R activation also exerts anti-proliferative effects on airway smooth muscle, suggesting potential to mitigate airway remodelling, which has been difficult to address with currently available therapies [206]. In eosinophilic COPD phenotypes, T2R agonists therefore represent a promising therapeutic strategy to enhance MCC, restore airway patency, and attenuate structural changes in the airways.
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GOLD 2025. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2025 Report). Available online: https://goldcopd.org/2025-gold-report/ (accessed on 15 March 2025).
- Shapiro, A.J.; Zariwala, M.A.; Ferkol, T.; Davis, S.D.; Sagel, S.D.; Dell, S.D.; Rosenfeld, M.; Olivier, K.N.; Milla, C.; Daniel, S.J.; et al. Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016, 51, 115–132. [Google Scholar] [CrossRef]
- Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.; Coxson, H.O.; et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef]
- Bossé, Y.; Riesenfeld, E.P.; Paré, P.D.; Irvin, C.G. It’s not all smooth muscle: Non-smooth-muscle elements in control of resistance to airflow. Annu. Rev. Physiol. 2010, 72, 437–462. [Google Scholar] [CrossRef]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.R.; Boucher, R.C. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Investig. 2002, 109, 571–577. [Google Scholar] [CrossRef]
- Livraghi, A.; Randell, S.H. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol. Pathol. 2007, 35, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tiniakov, R.L.; Yeates, D.B. Peripheral opioidergic regulation of the tracheobronchial mucociliary transport system. J. Appl. Physiol. (1985) 2003, 94, 2375–2383. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sykes, D.L.; Morice, A.H. The Cough Reflex: The Janus of Respiratory Medicine. Front. Physiol. 2021, 12, 684080. [Google Scholar] [CrossRef]
- Clark, G.; Fitzgerald, D.A.; Rubin, B.K. Cough medicines for children- time for a reality check. Paediatr. Respir. Rev. 2023, 48, 30–38. [Google Scholar] [CrossRef]
- Johnson, M.; Rennard, S. Alternative mechanisms for long-acting beta(2)-adrenergic agonists in COPD. Chest 2001, 120, 258–270. [Google Scholar] [CrossRef]
- Bennett, W.D. Effect of beta-adrenergic agonists on mucociliary clearance. J. Allergy Clin. Immunol. 2002, 110, S291–S297. [Google Scholar] [CrossRef]
- Katsumata, M.; Fujisawa, T.; Kamiya, Y.; Tanaka, Y.; Kamiya, C.; Inoue, Y.; Hozumi, H.; Karayama, M.; Suzuki, Y.; Furuhashi, K.; et al. Effects of long-acting muscarinic antagonists on promoting ciliary function in airway epithelium. BMC Pulm. Med. 2022, 22, 186. [Google Scholar] [CrossRef]
- GOLD 2024. Global Initiative for Chronic Obstructive Lung Disease. 2024 GOLD Report; Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report. Available online: https://goldcopd.org/2024-gold-report/ (accessed on 24 November 2024).
- Yaghi, A.; Zaman, A.; Cox, G.; Dolovich, M.B. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir. Med. 2012, 106, 1139–1147. [Google Scholar] [CrossRef]
- Joskova, M.; Mokry, J.; Franova, S. Respiratory Cilia as a Therapeutic Target of Phosphodiesterase Inhibitors. Front. Pharmacol. 2020, 11, 609. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Yao, W.; Chen, P.; Kang, J.; Huang, S.; Chen, B.; Wang, C.; Ni, D.; Wang, X.; et al. COPD in Chinese nonsmokers. Eur. Respir. J. 2009, 33, 509–518. [Google Scholar] [CrossRef]
- Cohen, N.A.; Zhang, S.; Sharp, D.B.; Tamashiro, E.; Chen, B.; Sorscher, E.J.; Woodworth, B.A. Cigarette smoke condensate inhibits transepithelial chloride transport and ciliary beat frequency. Laryngoscope 2009, 119, 2269–2274. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, A.; Dolovich, M.B. Airway Epithelial Cell Cilia and Obstructive Lung Disease. Cells 2016, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017, 9, a028241. [Google Scholar] [CrossRef]
- Oltean, A.; Schaffer, A.J.; Bayly, P.V.; Brody, S.L. Quantifying Ciliary Dynamics during Assembly Reveals Stepwise Waveform Maturation in Airway Cells. Am. J. Respir. Cell Mol. Biol. 2018, 59, 511–522. [Google Scholar] [CrossRef]
- Price, M.E.; Sisson, J.H. Redox regulation of motile cilia in airway disease. Redox Biol. 2019, 27, 101146. [Google Scholar] [CrossRef] [PubMed]
- Delmotte, P.; Sanderson, M.J. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am. J. Respir. Cell Mol. Biol. 2006, 35, 110–117. [Google Scholar] [CrossRef]
- Schmid, A.; Salathe, M. Ciliary beat co-ordination by calcium. Biol. Cell 2011, 103, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Bricmont, N.; Alexandru, M.; Louis, B.; Papon, J.F.; Kempeneers, C. Ciliary Videomicroscopy: A Long Beat from the European Respiratory Society Guidelines to the Recognition as a Confirmatory Test for Primary Ciliary Dyskinesia. Diagnostics 2021, 11, 1700. [Google Scholar] [CrossRef]
- Jackson, C.L.; Bottier, M. Methods for the assessment of human airway ciliary function. Eur. Respir. J. 2022, 60, 2102300. [Google Scholar] [CrossRef] [PubMed]
- De Jesús-Rojas, W.; Demetriou, Z.J.; Muñiz-Hernández, J.; Rosario-Ortiz, G.; Quiñones, F.M.; Ramos-Benitez, M.J.; Mosquera, R.A. Advancing Primary Ciliary Dyskinesia Diagnosis through High-Speed Video Microscopy Analysis. Cells 2024, 13, 567. [Google Scholar] [CrossRef]
- Corcoran, T.E.; Broerman, M.J.; Kliment, C.R.; Lo, C. CFTR expression decreases with age in several airway cell types. Sci. Rep. 2024, 14, 28832. [Google Scholar] [CrossRef]
- Sewer, A.; Talikka, M.; Calvino-Martin, F.; Luettich, K.; Iskandar, A. Quantitative modeling of in vitro data using an adverse outcome pathway for the risk assessment of decreased lung function in humans. Toxicol. Lett. 2024, 393, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lansley, A.B.; Sanderson, M.J. Regulation of airway ciliary activity by Ca2+: Simultaneous measurement of beat frequency and intracellular Ca2+. Biophys. J. 1999, 77, 629–638. [Google Scholar] [CrossRef]
- Salathe, M. Regulation of mammalian ciliary beating. Annu. Rev. Physiol. 2007, 69, 401–422. [Google Scholar] [CrossRef]
- Satir, P.; Christensen, S.T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 2007, 69, 377–400. [Google Scholar] [CrossRef]
- Shah, A.S.; Ben-Shahar, Y.; Moninger, T.O.; Kline, J.N.; Welsh, M.J. Motile cilia of human airway epithelia are chemosensory. Science 2009, 325, 1131–1134. [Google Scholar] [CrossRef]
- Wyatt, T.A.; Spurzem, J.R.; May, K.; Sisson, J.H. Regulation of ciliary beat frequency by both PKA and PKG in bovine airway epithelial cells. Am. J. Physiol. 1998, 275, L827–L835. [Google Scholar] [CrossRef]
- Zhang, L.; Sanderson, M.J. Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP. J. Physiol. 2003, 546, 733–749. [Google Scholar] [CrossRef]
- Zhang, L.; Sanderson, M.J. The role of cGMP in the regulation of rabbit airway ciliary beat frequency. J. Physiol. 2003, 551, 765–776. [Google Scholar] [CrossRef]
- Wyatt, T.A.; Forgèt, M.A.; Adams, J.M.; Sisson, J.H. Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2005, 288, L546–L551. [Google Scholar] [CrossRef] [PubMed]
- Fulford, G.R.; Blake, J.R. Muco-ciliary transport in the lung. J. Theor. Biol. 1986, 121, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013, 93, 1019–1137. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Shah, A.S.; Moninger, T.O.; Ostedgaard, L.S.; Lu, L.; Tang, X.X.; Thornell, I.M.; Reznikov, L.R.; Ernst, S.E.; Karp, P.H.; et al. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling. Proc. Natl. Acad. Sci. USA 2018, 115, 1370–1375. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Ling, K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J. Dev. Biol. 2022, 10, 51. [Google Scholar] [CrossRef]
- Meldrum, O.W.; Donaldson, G.C.; Narayana, J.K.; Ivan, F.X.; Jaggi, T.K.; Mac Aogáin, M.; Finney, L.J.; Allinson, J.P.; Wedzicha, J.A.; Chotirmall, S.H. Accelerated Lung Function Decline and Mucus-Microbe Evolution in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2024, 210, 298–310. [Google Scholar] [CrossRef]
- Radicioni, G.; Ceppe, A.; Ford, A.A.; Alexis, N.E.; Barr, R.G.; Bleecker, E.R.; Christenson, S.A.; Cooper, C.B.; Han, M.K.; Hansel, N.N.; et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021, 9, 1241–1254. [Google Scholar] [CrossRef]
- Abrami, M.; Biasin, A.; Tescione, F.; Tierno, D.; Dapas, B.; Carbone, A.; Grassi, G.; Conese, M.; Di Gioia, S.; Larobina, D.; et al. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int. J. Mol. Sci. 2024, 25, 1933. [Google Scholar] [CrossRef] [PubMed]
- Ueki, I.; German, V.F.; Nadel, J.A. Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am. Rev. Respir. Dis. 1980, 121, 351–357. [Google Scholar]
- Rogers, D.F. The role of airway secretions in COPD: Pathophysiology, epidemiology and pharmacotherapeutic options. COPD 2005, 2, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Foskett, J.K. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J. Clin. Investig. 2010, 120, 3137–3148. [Google Scholar] [CrossRef] [PubMed]
- Bonser, L.R.; Erle, D.J. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J. Clin. Med. 2017, 6, 112. [Google Scholar] [CrossRef]
- Widdicombe, J.H. Regulation of the depth and composition of airway surface liquid. J. Anat. 2002, 201, 313–318. [Google Scholar] [CrossRef]
- McMahon, D.B.; Carey, R.M.; Kohanski, M.A.; Tong, C.C.L.; Papagiannopoulos, P.; Adappa, N.D.; Palmer, J.N.; Lee, R.J. Neuropeptide regulation of secretion and inflammation in human airway gland serous cells. Eur. Respir. J. 2020, 55, 1901386. [Google Scholar] [CrossRef]
- Ousingsawat, J.; Martins, J.R.; Schreiber, R.; Rock, J.R.; Harfe, B.D.; Kunzelmann, K. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 2009, 284, 28698–28703. [Google Scholar] [CrossRef]
- Catalán, M.A.; Nakamoto, T.; Gonzalez-Begne, M.; Camden, J.M.; Wall, S.M.; Clarke, L.L.; Melvin, J.E. Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland. J. Physiol. 2010, 588, 713–724. [Google Scholar] [CrossRef]
- Salinas, D.; Haggie, P.M.; Thiagarajah, J.R.; Song, Y.; Rosbe, K.; Finkbeiner, W.E.; Nielson, D.W.; Verkman, A.S. Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J. 2005, 19, 431–433. [Google Scholar] [CrossRef]
- Namkung, W.; Finkbeiner, W.E.; Verkman, A.S. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Mol. Biol. Cell 2010, 21, 2639–2648. [Google Scholar] [CrossRef]
- Bozoky, Z.; Ahmadi, S.; Milman, T.; Kim, T.H.; Du, K.; Di Paola, M.; Pasyk, S.; Pekhletski, R.; Keller, J.P.; Bear, C.E.; et al. Synergy of cAMP and calcium signaling pathways in CFTR regulation. Proc. Natl. Acad. Sci. USA 2017, 114, E2086–E2095. [Google Scholar] [CrossRef]
- Jain, A.; Kim, B.R.; Yu, W.; Moninger, T.O.; Karp, P.H.; Wagner, B.A.; Welsh, M.J. Mitochondrial uncoupling proteins protect human airway epithelial ciliated cells from oxidative damage. Proc. Natl. Acad. Sci. USA 2024, 121, e2318771121. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Tirichen, H.; Yaigoub, H.; Xu, W.; Wu, C.; Li, R.; Li, Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front. Physiol. 2021, 12, 627837. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef] [PubMed]
- Mata, M.; Sarrion, I.; Armengot, M.; Carda, C.; Martinez, I.; Melero, J.A.; Cortijo, J. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: Effectiveness of N-acetylcysteine. PLoS ONE 2012, 7, e48037. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yaguchi, S.; Shiba, K.; Yamada, L.; Yaguchi, J.; Shibata, D.; Sawada, H.; Inaba, K. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos. Cytoskeleton 2013, 70, 453–470. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koenitzer, J.R.; Gupta, D.K.; Twan, W.K.; Xu, H.; Hadas, N.; Hawkins, F.J.; Beermann, M.L.; Penny, G.M.; Wamsley, N.T.; Berical, A.; et al. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024, 9, e180198. [Google Scholar] [CrossRef]
- Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef]
- Al-Shmgani, H.S.; Moate, R.M.; Sneyd, J.R.; Macnaughton, P.D.; Moody, A.J. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: The protective role of antioxidant vitamins E and C. Biochem. Biophys. Res. Commun. 2012, 429, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Rankin, H.V.; Moody, A.J.; Moate, R.M.; Macnaughton, P.D.; Rahamim, J.; Smith, M.E.; Sneyd, J.R. Elevated oxygen fraction reduces cilial abundance in explanted human bronchial tissue. Ultrastruct. Pathol. 2007, 31, 339–346. [Google Scholar] [CrossRef]
- Konrad, F.; Schiener, R.; Marx, T.; Georgieff, M. Ultrastructure and mucociliary transport of bronchial respiratory epithelium in intubated patients. Intensive Care Med. 1995, 21, 482–489. [Google Scholar] [CrossRef]
- Maser, R.L.; Vassmer, D.; Magenheimer, B.S.; Calvet, J.P. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J. Am. Soc. Nephrol. 2002, 13, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Chae, S.; Lee, H.K.; Park, I.; Kim, C.; Ismail, T.; Kim, Y.; Park, J.W.; Kwon, O.S.; Kang, B.S.; et al. Peroxiredoxin5 Controls Vertebrate Ciliogenesis by Modulating Mitochondrial Reactive Oxygen Species. Antioxid. Redox Signal. 2019, 30, 1731–1745. [Google Scholar] [CrossRef]
- Agborbesong, E.; Zhou, J.X.; Li, L.X.; Calvet, J.P.; Li, X. Antioxidant enzyme peroxiredoxin 5 regulates cyst growth and ciliogenesis via modulating plk1 stability. FASEB J. 2022, 36, e22089. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Koh, M.S.; O’Callaghan, C.; Allen, J.C., Jr.; Rutman, A.; Hirst, R.A.; Connolly, J.; Low, S.Y.; Thun How, O.; Chian Min, L.; et al. Dysfunctional Bronchial Cilia Are a Feature of Chronic Obstructive Pulmonary Disease (COPD). COPD 2021, 18, 657–663. [Google Scholar] [CrossRef]
- Auerbach, O.; Stout, A.P.; Hammond, E.C.; Garfinkel, L. Changes in bronchial epithelium in relation to sex, age, residence, smoking and pneumonia. N. Engl. J. Med. 1962, 267, 111–119. [Google Scholar] [CrossRef]
- Auerbach, O.; Hammond, E.C.; Garfinkel, L. Changes in bronchial epithelium in relation to cigarette smoking, 1955–1960 vs. 1970–1977. N. Engl. J. Med. 1979, 300, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Rutman, A.; Hirst, R.A.; Haldar, P.; Wardlaw, A.J.; Bankart, J.; Brightling, C.E.; O’Callaghan, C. Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J. Allergy Clin. Immunol. 2010, 126, 722–729.e2. [Google Scholar] [CrossRef] [PubMed]
- Robinot, R.; Hubert, M.; de Melo, G.D.; Lazarini, F.; Bruel, T.; Smith, N.; Levallois, S.; Larrous, F.; Fernandes, J.; Gellenoncourt, S.; et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat. Commun. 2021, 12, 4354. [Google Scholar] [CrossRef]
- Leopold, P.L.; O’Mahony, M.J.; Lian, X.J.; Tilley, A.E.; Harvey, B.G.; Crystal, R.G. Smoking is associated with shortened airway cilia. PLoS ONE 2009, 4, e8157. [Google Scholar] [CrossRef]
- Hessel, J.; Heldrich, J.; Fuller, J.; Staudt, M.R.; Radisch, S.; Hollmann, C.; Harvey, B.G.; Kaner, R.J.; Salit, J.; Yee-Levin, J.; et al. Intraflagellar transport gene expression associated with short cilia in smoking and COPD. PLoS ONE 2014, 9, e85453. [Google Scholar] [CrossRef]
- Sleigh, M.A. Ciliary function in mucus transport. Chest 1981, 80, 791–795. [Google Scholar]
- Rayner, C.F.; Rutman, A.; Dewar, A.; Greenstone, M.A.; Cole, P.J.; Wilson, R. Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. Am. J. Respir. Crit. Care Med. 1996, 153, 1123–1129. [Google Scholar] [CrossRef]
- Rayner, C.F.; Rutman, A.; Dewar, A.; Cole, P.J.; Wilson, R. Ciliary disorientation in patients with chronic upper respiratory tract inflammation. Am. J. Respir. Crit. Care Med. 1995, 151, 800–804. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, P.; Li, J.; Cao, Y.; Zhang, J. Phosphatidylinositol 4-kinase β is required for the ciliogenesis of zebrafish otic vesicle. J Genet. Genom. 2020, 47, 627–636. [Google Scholar] [CrossRef]
- Sadek, C.M.; Jiménez, A.; Damdimopoulos, A.E.; Kieselbach, T.; Nord, M.; Gustafsson, J.A.; Spyrou, G.; Davis, E.C.; Oko, R.; van der Hoorn, F.A.; et al. Characterization of human thioredoxin-like 2. A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid manchette and axoneme. J. Biol. Chem. 2003, 278, 13133–13142. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K. Analysis of redox-sensitive dynein components. Methods Cell Biol. 2009, 92, 153–161. [Google Scholar]
- Lam, H.C.; Cloonan, S.M.; Bhashyam, A.R.; Haspel, J.A.; Singh, A.; Sathirapongsasuti, J.F.; Cervo, M.; Yao, H.; Chung, A.L.; Mizumura, K.; et al. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J. Clin. Investig. 2020, 130, 6189. [Google Scholar] [CrossRef]
- Petit, L.M.G.; Belgacemi, R.; Ancel, J.; Saber Cherif, L.; Polette, M.; Perotin, J.M.; Spassky, N.; Pilette, C.; Al Alam, D.; Deslée, G.; et al. Airway ciliated cells in adult lung homeostasis and COPD. Eur. Respir. Rev. 2023, 32, 230106. [Google Scholar] [CrossRef] [PubMed]
- Tamashiro, E.; Xiong, G.; Anselmo-Lima, W.T.; Kreindler, J.L.; Palmer, J.N.; Cohen, N.A. Cigarette smoke exposure impairs respiratory epithelial ciliogenesis. Am. J. Rhinol. Allergy 2009, 23, 117–122. [Google Scholar] [CrossRef]
- Zuo, H.; Han, B.; Poppinga, W.J.; Ringnalda, L.; Kistemaker, L.E.M.; Halayko, A.J.; Gosens, R.; Nikolaev, V.O.; Schmidt, M. Cigarette smoke up-regulates PDE3 and PDE4 to decrease cAMP in airway cells. Br. J. Pharmacol. 2018, 175, 2988–3006. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Iverson, E.; Kaler, L.; Boboltz, A.; Scull, M.A.; Duncan, G.A. MUC5B mobilizes and MUC5AC spatially aligns mucociliary transport on human airway epithelium. Sci. Adv. 2022, 8, eabq5049. [Google Scholar] [CrossRef]
- Roy, M.G.; Livraghi-Butrico, A.; Fletcher, A.A.; McElwee, M.M.; Evans, S.E.; Boerner, R.M.; Alexander, S.N.; Bellinghausen, L.K.; Song, A.S.; Petrova, Y.M.; et al. Muc5b is required for airway defence. Nature 2014, 505, 412–416. [Google Scholar] [CrossRef]
- Rogers, D.F.; Barnes, P.J. Treatment of airway mucus hypersecretion. Ann. Med. 2006, 38, 116–125. [Google Scholar] [CrossRef]
- Thornton, D.J.; Carlstedt, I.; Howard, M.; Devine, P.L.; Price, M.R.; Sheehan, J.K. Respiratory mucins: Identification of core proteins and glycoforms. Biochem. J. 1996, 316, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.F. Motor control of airway goblet cells and glands. Respir. Physiol. 2001, 125, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Thornton, D.J.; Rousseau, K.; McGuckin, M.A. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 2008, 70, 459–486. [Google Scholar] [CrossRef]
- Lin, V.Y.; Kaza, N.; Birket, S.E.; Kim, H.; Edwards, L.J.; LaFontaine, J.; Liu, L.; Mazur, M.; Byzek, S.A.; Hanes, J.; et al. mucus viscosity and airway dehydration impact COPD airway clearance. Eur. Respir. J. 2020, 55, 1900419. [Google Scholar] [CrossRef]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef]
- Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef]
- Lindberg, S.; Khan, R.; Runer, T. The effects of formoterol, a long-acting beta 2-adrenoceptor agonist, on mucociliary activity. Eur. J. Pharmacol. 1995, 285, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kanthakumar, K.; Cundell, D.R.; Johnson, M.; Wills, P.J.; Taylor, G.W.; Cole, P.J.; Wilson, R. Effect of salmeterol on human nasal epithelial cell ciliary beating: Inhibition of the ciliotoxin, pyocyanin. Br. J. Pharmacol. 1994, 112, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.W.; Casanova, M.; Heck, H.A. Depletion of nasal mucosal glutathione by acrolein and enhancement of formaldehyde-induced DNA-protein cross-linking by simultaneous exposure to acrolein. Arch. Toxicol. 1985, 58, 67–71. [Google Scholar] [CrossRef]
- Cassee, F.R.; Groten, J.P.; Feron, V.J. Changes in the nasal epithelium of rats exposed by inhalation to mixtures of formaldehyde, acetaldehyde, and acrolein. Fundam. Appl. Toxicol. 1996, 29, 208–218. [Google Scholar] [CrossRef][Green Version]
- Xiong, R.; Wu, Q.; Muskhelishvili, L.; Davis, K.; Shemansky, J.M.; Bryant, M.; Rosenfeldt, H.; Healy, S.M.; Cao, X. Evaluating Mode of Action of Acrolein Toxicity in an In Vitro Human Airway Tissue Model. Toxicol. Sci. 2018, 166, 451–464. [Google Scholar] [CrossRef]
- Ancel, J.; Belgacemi, R.; Diabasana, Z.; Perotin, J.M.; Bonnomet, A.; Dewolf, M.; Launois, C.; Mulette, P.; Deslée, G.; Polette, M.; et al. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics 2021, 11, 1579. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Sagar, S.; Kapoor, H.; Chaudhary, N.; Roy, S.S. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021, 58, 184–199. [Google Scholar] [CrossRef]
- Romero-Garcia, S.; Prado-Garcia, H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int. J. Oncol. 2019, 54, 11551167. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros, M.; Rinaldi, D.; Marder, M.; Espelt, M.V.; Mangialavori, I.; Vigil, M.; Rossi, J.P.; Ferreira-Gomes, M. Natural flavonoids inhibit the plasma membrane Ca2+-ATPase. Biochem. Pharmacol. 2019, 166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Undem, B.J.; Oh, E.J.; Lancaster, E.; Weinreich, D. Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves. J. Neurophysiol. 2003, 89, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, M.; Sanderson, M.J. Contractility and Ca2+ signaling of smooth muscle cells in different generations of mouse airways. Am. J. Respir. Cell Mol. Biol. 2007, 36, 122–130. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, H.; Wu, M.; Yang, H.; Kudo, M.; Peters, C.J.; Woodruff, P.G.; Solberg, O.D.; Donne, M.L.; Huang, X.; et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. USA 2012, 109, 16354–16359. [Google Scholar] [CrossRef]
- Joskova, M.; Sutovska, M.; Durdik, P.; Koniar, D.; Hargas, L.; Banovcin, P.; Hrianka, M.; Khazaei, V.; Pappova, L.; Franova, S. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation. Adv. Exp. Med. Biol. 2016, 921, 27–35. [Google Scholar]
- Centeio, R.; Ousingsawat, J.; Cabrita, I.; Schreiber, R.; Talbi, K.; Benedetto, R.; Dousova, T.; Verbeken, E.K.; De Boeck, K.; Cohen, I.; et al. Mucus release and airway constriction by TMEM16A may worsen pathology in inflammatory lung disease. Int. J. Mol. Sci. 2021, 22, 7852. [Google Scholar] [CrossRef]
- Šutovská, M.; Kocmálová, M.; Kazimierová, I.; Forsberg, C.I.N.; Jošková, M.; Adamkov, M.; Fraňová, S. Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs. Adv. Exp. Med. Biol. 2021, 1335, 87–101. [Google Scholar]
- Hammad, A.S.; Machaca, K. Store Operated Calcium Entry in Cell Migration and Cancer Metastasis. Cells 2021, 10, 1246. [Google Scholar] [CrossRef] [PubMed]
- Hajnóczky, G.; Csordás, G.; Das, S.; Garcia-Perez, C.; Saotome, M.; Sinha Roy, S.; Yi, M. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006, 40, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, M.D.; Garcia-Flores, A.; Marciano, D.; Franco, M.C.; Fineman, J.R.; Aggarwal, S.; Wang, T.; Black, S.M. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol. 2024, 70, 103049. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.; Knabe, L.; Khelloufi, K.; Jory, M.; Gras, D.; Cabon, Y.; Begg, M.; Richard, S.; Massiera, G.; Chanez, P.; et al. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI3 Signaling. Am. J. Respir. Cell Mol. Biol. 2019, 61, 501–511. [Google Scholar] [CrossRef]
- Li, C.L.; Liu, J.F.; Liu, S.F. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines 2024, 12, 814. [Google Scholar] [CrossRef]
- Koenig, P.; Klein, M.K.; Haberberger, R.V.; Krain, B.; Wess, J.; Kummer, W. M1, M2, and M3 muscarinic receptors critically regulate cilia-driven airway epithelial particle transport. Auton. Neurosci. 2007, 135, 171–172. [Google Scholar] [CrossRef]
- Klein, M.K.; Haberberger, R.V.; Hartmann, P.; Faulhammer, P.; Lips, K.S.; Krain, B.; Wess, J.; Kummer, W.; König, P. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development. Eur. Respir. J. 2009, 33, 1113–1121. [Google Scholar] [CrossRef]
- Zagoory, O.; Braiman, A.; Priel, Z. The mechanism of ciliary stimulation by acetylcholine: Roles of calcium, PKA, and PKG. J. Gen. Physiol. 2002, 119, 329–339. [Google Scholar] [CrossRef]
- Sanderson, M.J.; Dirksen, E.R. Mechanosensitive and beta-adrenergic control of the ciliary beat frequency of mammalian respiratory tract cells in culture. Am. Rev. Respir. Dis. 1989, 139, 432–440. [Google Scholar] [CrossRef]
- Lansley, A.B.; Sanderson, M.J.; Dirksen, E.R. Control of the beat cycle of respiratory tract cilia by Ca2+ and cAMP. Am. J. Physiol. 1992, 263, L232–L242. [Google Scholar] [CrossRef]
- Kultgen, P.L.; Byrd, S.K.; Ostrowski, L.E.; Milgram, S.L. Characterization of an A-kinase anchoring protein in human ciliary axonemes. Mol. Biol. Cell 2002, 13, 4156–4166. [Google Scholar] [CrossRef]
- Schmid, A.; Sutto, Z.; Nlend, M.C.; Horvath, G.; Schmid, N.; Buck, J.; Levin, L.R.; Conner, G.E.; Fregien, N.; Salathe, M. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J. Gen. Physiol. 2007, 130, 99–109. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hirata, M.; Ito, Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br. J. Pharmacol. 1985, 86, 191–199. [Google Scholar] [CrossRef]
- Chilvers, E.R.; Challiss, R.A.; Barnes, P.J.; Nahorski, S.R. Mass changes of inositol(1,4,5)trisphosphate in trachealis muscle following agonist stimulation. Eur. J. Pharmacol. 1989, 164, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Casarosa, P.; Bouyssou, T.; Germeyer, S.; Schnapp, A.; Gantner, F.; Pieper, M. Preclinical evaluation of long-acting muscarinic antagonists: Comparison of tiotropium and investigational drugs. J. Pharmacol. Exp. Ther. 2009, 330, 660–668. [Google Scholar] [CrossRef]
- Salathe, M.; Lipson, E.J.; Ivonnet, P.I.; Bookman, R.J. Muscarinic signaling in ciliated tracheal epithelial cells: Dual effects on Ca2+ and ciliary beating. Am. J. Physiol. 1997, 272, L301–L310. [Google Scholar] [CrossRef]
- Zagoory, O.; Braiman, A.; Gheber, L.; Priel, Z. Role of calcium and calmodulin in ciliary stimulation induced by acetylcholine. Am. J. Physiol. Cell Physiol. 2001, 280, C100–C109. [Google Scholar] [CrossRef] [PubMed]
- Koarai, A.; Sugiura, H.; Yamada, M.; Ichikawa, T.; Fujino, N.; Kawayama, T.; Ichinose, M. Treatment with LABA versus LAMA for stable COPD: A systematic review and meta-analysis. BMC Pulm. Med. 2020, 20, 111. [Google Scholar] [CrossRef]
- Barber, R.; Baillie, G.S.; Bergmann, R.; Shepherd, M.C.; Sepper, R.; Houslay, M.D.; Heeke, G.V. Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L332–L343. [Google Scholar] [CrossRef] [PubMed]
- Pavia, D.; Bateman, J.R.; Sheahan, N.F.; Clarke, S.W. Effect of ipratropium bromide on mucociliary clearance and pulmonary function in reversible airways obstruction. Thorax 1979, 34, 501–507. [Google Scholar] [CrossRef]
- Wanner, A. Effect of ipratropium bromide on airway mucociliary function. Am. J. Med. 1986, 81, 23–27. [Google Scholar] [CrossRef]
- Wanner, A.; Salathé, M.; O’Riordan, T.G. Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 1996, 154, 1868–1902. [Google Scholar] [CrossRef] [PubMed]
- Widdicombe, J.H. Altered NaCl Concentration of Airway Surface Liquid in Cystic Fibrosis. News Physiol. Sci. 1999, 14, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Berdiev, B.K.; Qadri, Y.J.; Benos, D.J. Assessment of the CFTR and ENaC association. Mol. Biosyst. 2009, 5, 123–127. [Google Scholar] [CrossRef]
- Cortijo, J.; Mata, M.; Milara, J.; Donet, E.; Gavaldà, A.; Miralpeix, M.; Morcillo, E.J. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. Eur. Respir. J. 2011, 37, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, Z. The Potential Role and Regulatory Mechanisms of MUC5AC in Chronic Obstructive Pulmonary Disease. Molecules 2020, 25, 4437. [Google Scholar] [CrossRef]
- Wang, Y.; Ninaber, D.K.; van Schadewijk, A.; Hiemstra, P.S. Tiotropium and Fluticasone Inhibit Rhinovirus-Induced Mucin Production via Multiple Mechanisms in Differentiated Airway Epithelial Cells. Front. Cell. Infect. Microbiol. 2020, 10, 278. [Google Scholar] [CrossRef]
- Hasani, A.; Toms, N.; Agnew, J.E.; Sarno, M.; Harrison, A.J.; Dilworth, P. The effect of inhaled tiotropium bromide on lung mucociliary clearance in patients with COPD. Chest 2004, 125, 1726–1734. [Google Scholar] [CrossRef][Green Version]
- Ghosh, A.; Boucher, R.C.; Tarran, R. Airway hydration and COPD. Cell. Mol. Life Sci. 2015, 72, 3637–3652. [Google Scholar] [CrossRef]
- Braun, A.P. Cigarette smoke and calcium conspire to impair CFTR function in airway epithelia. Channels 2014, 8, 172–173. [Google Scholar] [CrossRef][Green Version]
- Li, J.; Kanju, P.; Patterson, M.; Chew, W.L.; Cho, S.H.; Gilmour, I.; Oliver, T.; Yasuda, R.; Ghio, A.; Simon, S.A.; et al. TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ. Health Perspect. 2011, 119, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Giembycz, M.A.; Newton, R. Beyond the dogma: Novel beta2-adrenoceptor signalling in the airways. Eur. Respir. J. 2006, 27, 1286–1306. [Google Scholar] [CrossRef] [PubMed]
- Billington, C.K.; Penn, R.B. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir. Res. 2003, 4, 2. [Google Scholar] [CrossRef]
- Billington, C.K.; Hall, I.P. Novel cAMP signalling paradigms: Therapeutic implications for airway disease. Br. J. Pharmacol. 2012, 166, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Robichaux, W.G., 3rd; Cheng, X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol. Rev. 2018, 98, 919–1053. [Google Scholar] [CrossRef]
- Roscioni, S.S.; Maarsingh, H.; Elzinga, C.R.; Schuur, J.; Menzen, M.; Halayko, A.J.; Meurs, H.; Schmidt, M. Epac as a novel effector of airway smooth muscle relaxation. J. Cell. Mol. Med. 2011, 15, 1551–1563. [Google Scholar] [CrossRef]
- Zieba, B.J.; Artamonov, M.V.; Jin, L.; Momotani, K.; Ho, R.; Franke, A.S.; Neppl, R.L.; Stevenson, A.S.; Khromov, A.S.; Chrzanowska-Wodnicka, M.; et al. The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J. Biol. Chem. 2011, 286, 16681–16692. [Google Scholar] [CrossRef]
- Kogiso, H.; Hosogi, S.; Ikeuchi, Y.; Tanaka, S.; Inui, T.; Marunaka, Y.; Nakahari, T. [Ca2+]i modulation of cAMP-stimulated ciliary beat frequency via PDE1 in airway ciliary cells of mice. Exp. Physiol. 2018, 103, 381–390. [Google Scholar] [CrossRef]
- Hanania, N.A.; Celli, B.R. Phosphodiesterase Inhibition as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease: Where We Have Been and What Lies Ahead. Chronic Obstr. Pulm. Dis. 2025, 12, 82–92. [Google Scholar] [CrossRef]
- Kogiso, H.; Hosogi, S.; Ikeuchi, Y.; Tanaka, S.; Shimamoto, C.; Matsumura, H.; Nakano, T.; Sano, K.I.; Inui, T.; Marunaka, Y.; et al. A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia. Pflug. Arch. 2017, 469, 1215–1227. [Google Scholar] [CrossRef]
- Zuo, H.; Faiz, A.; van den Berge, M.; Mudiyanselage, S.N.H.R.; Borghuis, T.; Timens, W.; Nikolaev, V.O.; Burgess, J.K.; Schmidt, M. Cigarette smoke exposure alters phosphodiesterases in human structural lung cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 318, L59–L64. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Hutchison, L.; Donaldson, K.; MacKenzie, S.J.; Dick, C.A.; Stone, V. The effect of oxidative stress on macrophages and lung epithelial cells: The role of phosphodiesterases 1 and 4. Toxicol. Lett. 2007, 168, 1–6. [Google Scholar] [CrossRef]
- Devalia, J.L.; Sapsford, R.J.; Rusznak, C.; Toumbis, M.J.; Davies, R.J. The effects of salmeterol and salbutamol on ciliary beat frequency of cultured human bronchial epithelial cells, in vitro. Pulm. Pharmacol. 1992, 5, 257–263. [Google Scholar] [CrossRef]
- Salathe, M. Effects of β-agonists on airway epithelial cells. J. Allergy Clin. Immunol. 2002, 110, S275–S281. [Google Scholar] [CrossRef]
- Schmid, A.; Baumlin, N.; Ivonnet, P.; Dennis, J.S.; Campos, M.; Krick, S.; Salathe, M. Roflumilast partially reverses smoke-induced mucociliary dysfunction. Respir. Res. 2015, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Yappalparvi, A.; Balaraman, A.K.; Padmapriya, G.; Gaidhane, S.; Kaur, I.; Lal, M.; Iqbal, S.; Prasad, G.V.S.; Pramanik, A.; Vishwakarma, T.; et al. Safety and efficacy of ensifentrine in COPD: A systemic review and meta-analysis. Respir. Med. 2025, 236, 107863. [Google Scholar] [CrossRef] [PubMed]
- Derler, I.; Jardin, I.; Romanin, C. Molecular mechanisms of STIM/Orai communication. Am. J. Physiol. Cell Physiol. 2016, 310, C643–C662. [Google Scholar] [CrossRef]
- Luan, X.; Le, Y.; Jagadeeshan, S.; Murray, B.; Carmalt, J.L.; Duke, T.; Beazley, S.; Fujiyama, M.; Swekla, K.; Gray, B.; et al. cAMP triggers Na+ absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep. 2021, 37, 109795. [Google Scholar] [CrossRef]
- Laoukili, J.; Perret, E.; Willems, T.; Minty, A.; Parthoens, E.; Houcine, O.; Coste, A.; Jorissen, M.; Marano, F.; Caput, D.; et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Investig. 2001, 108, 1817–1824. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.Y.; Andiappan, A.K.; Yan, Y.; Tan, K.S.; Ong, H.H.; Thong, K.T.; Ong, Y.K.; Yu, F.G.; Low, H.B.; et al. Role of IL-13Rα2 in modulating IL-13-induced MUC5AC and ciliary changes in healthy and CRSwNP mucosa. Allergy 2018, 73, 1673–1685. [Google Scholar] [CrossRef]
- Shah, B.K.; Singh, B.; Wang, Y.; Xie, S.; Wang, C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediat. Inflamm. 2023, 2023, 8840594. [Google Scholar] [CrossRef]
- Calzetta, L.; Chetta, A.; Aiello, M.; Pistocchini, E.; Rogliani, P. The Impact of Corticosteroids on Human Airway Smooth Muscle Contractility and Airway Hyperresponsiveness: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15285. [Google Scholar] [CrossRef] [PubMed]
- Fazio, F.; Lafortuna, C.L. Beclomethasone Dipropionate Does Not Affect Mucociliary Clearance in Patients with Chronic Obstructive Lung Disease. Respiration 1986, 50, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Guleria, R.; Singh, T.R.; Sinha, S.; Padhy, K.; Gupta, K.; Pande, J.N. Effect of single inhalation of a salbutamol, ipratropium bromide and beclomethasone on mucociliary clearance in patients with chronic obstructive airway disease. Indian J. Chest Dis. Allied Sci. 2003, 45, 241–246. [Google Scholar]
- Tanabe, T.; Kanoh, S.; Tsushima, K.; Yamazaki, Y.; Kubo, K.; Rubin, B.K. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.S.; Larcombe, A.N.; Wang, K.C.W.; Shamsuddin, D.; Landwehr, K.R.; Noble, P.B.; Henry, P.J. Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation, and airways hyperresponsiveness in mice exposed to house dust mite extract. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2022, 322, L683–L698. [Google Scholar] [CrossRef]
- Kimura, Y.; Shinoda, M.; Shinkai, M.; Kaneko, T. Solithromycin inhibits IL-13-induced goblet cell hyperplasia and MUC5AC, CLCA1, and ANO1 in human bronchial epithelial cells. PeerJ 2023, 11, e14695. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Patel, N.; et al. Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. N. Engl. J. Med. 2024, 390, 2274–2283. [Google Scholar] [CrossRef]
- Nourian, Y.H.; Salimian, J.; Ahmadi, A.; Salehi, Z.; Karimi, M.; Emamvirdizadeh, A.; Azimzadeh Jamalkandi, S.; Ghanei, M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem. Biophys. Rep. 2023, 34, 101438. [Google Scholar] [CrossRef]
- Lea, S.; Metryka, A.; Li, J.; Higham, A.; Bridgewood, C.; Villetti, G.; Civelli, M.; Facchinetti, F.; Singh, D. The modulatory effects of the PDE4 inhibitors CHF6001 and roflumilast in alveolar macrophages and lung tissue from COPD patients. Cytokine 2019, 123, 154739. [Google Scholar] [CrossRef]
- Contreras, S.; Milara, J.; Morcillo, E.; Cortijo, J. Selective Inhibition of Phosphodiesterases 4A, B, C and D Isoforms in Chronic Respiratory Diseases: Current and Future Evidences. Curr. Pharm. Des. 2017, 23, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Khan, M.I.; Panwar, A.; Vashist, B.; Rai, S.K.; Kumar, A. PDE4 Inhibitors and their Potential Combinations for the Treatment of Chronic Obstructive Pulmonary Disease: A Narrative Review. Open Respir. Med. J. 2024, 18, e18743064340418. [Google Scholar] [CrossRef] [PubMed]
- Chiesi Farmaceutici S.p.A. Chiesi Clinical Study Register. Available online: https://www.chiesi.com/en/chiesi-clinical-study-register/ (accessed on 27 July 2025).
- DeNoble, V.J. Vinpocetine enhances retrieval of a step-through passive avoidance response in rats. Pharmacol. Biochem. Behav. 1987, 26, 183–186. [Google Scholar] [CrossRef]
- Deshmukh, R.; Sharma, V.; Mehan, S.; Sharma, N.; Bedi, K.L. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—A PDE1 inhibitor. Eur. J. Pharmacol. 2009, 620, 49–56. [Google Scholar] [CrossRef]
- Choi, W.S.; Kang, H.S.; Kim, H.J.; Lee, W.T.; Sohn, U.D.; Lee, J.Y. Vinpocetine alleviates lung inflammation via macrophage inflammatory protein-1β inhibition in an ovalbumin-induced allergic asthma model. PLoS ONE 2021, 16, e0251012. [Google Scholar] [CrossRef] [PubMed]
- Nocker, R.E.; Schoonbrood, D.F.; van de Graaf, E.A.; Hack, C.E.; Lutter, R.; Jansen, H.M.; Out, T.A. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 1996, 109, 183–191. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, C. The Significance of Serum Interleukin-8 in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Tanaffos 2018, 17, 13–21. [Google Scholar]
- Pacini, E.S.A.; Satori, N.A.; Jackson, E.K.; Godinho, R.O. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front. Immunol. 2022, 13, 866097. [Google Scholar] [CrossRef]
- Ray, A.; Jaiswal, A.; Dutta, J.; Singh, S.; Mabalirajan, U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020, 55, 111–121. [Google Scholar] [CrossRef]
- Stanley, P.J.; Wilson, R.; Greenstone, M.A.; MacWilliam, L.; Cole, P.J. Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 1986, 41, 519–523. [Google Scholar] [CrossRef]
- Carson, J.L.; Lu, T.S.; Brighton, L.; Hazucha, M.; Jaspers, I.; Zhou, H. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke. In Vitro Cell Dev. Biol. Anim. 2010, 46, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M. Interactions between corticosteroids and beta2-agonists in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2004, 1, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; Caramori, G.; Adcock, I.M. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: Present and future. Eur. J. Clin. Pharmacol. 2009, 65, 853–871. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.H.; Yang, P.; Li, J.; Tian, Z.L. Effects of selective phosphodiesterase 4 inhibitor on expression of aquaporin 5 in airway mucus hypersecretion model of rats. Zhonghua Yi Xue Za Zhi 2013, 93, 619–622. [Google Scholar]
- Wittekindt, O.H.; Dietl, P. Aquaporins in the lung. Pflug. Arch. 2019, 471, 519–532. [Google Scholar] [CrossRef]
- Verkman, A.S. Role of aquaporins in lung liquid physiology. Respir. Physiol. Neurobiol. 2007, 159, 324–330. [Google Scholar] [CrossRef]
- Wang, K.; Feng, Y.L.; Wen, F.Q.; Chen, X.R.; Ou, X.M.; Xu, D.; Yang, J.; Deng, Z.P. Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease. Acta Pharmacol. Sin. 2007, 28, 1166–1174. [Google Scholar] [CrossRef][Green Version]
- Calero, C.; López-Campos, J.L.; Izquierdo, L.G.; Sánchez-Silva, R.; López-Villalobos, J.L.; Sáenz-Coronilla, F.J.; Arellano-Orden, E.; Montes-Worboys, A.; Echevarría, M. Expression of aquaporins in bronchial tissue and lung parenchyma of patients with chronic obstructive pulmonary disease. Multidiscip. Respir. Med. 2014, 9, 29. [Google Scholar] [CrossRef]
- Hansel, N.N.; Sidhaye, V.; Rafaels, N.M.; Gao, L.; Gao, P.; Williams, R.; Connett, J.E.; Beaty, T.H.; Mathias, R.A.; Wise, R.A.; et al. Aquaporin 5 polymorphisms and rate of lung function decline in chronic obstructive pulmonary disease. PLoS ONE 2010, 5, e14226. [Google Scholar] [CrossRef]
- Koblizek, V.; Tomsova, M.; Cermakova, E.; Papousek, P.; Pracharova, S.; Mandalia, R.A.; Ceral, J.; Novosad, J.; Fila, L.; Sedlak, V.; et al. Impairment of nasal mucociliary clearance in former smokers with stable chronic obstructive pulmonary disease relates to the presence of a chronic bronchitis phenotype. Rhinology 2011, 49, 397–406. [Google Scholar] [CrossRef]
- Fairley, L.H.; Das, S.; Dharwal, V.; Amorim, N.; Hegarty, K.J.; Wadhwa, R.; Mounika, G.; Hansbro, P.M. Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants 2023, 12, 973. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, F.; Duan, H.; Fu, S.; Zhao, C. Novel insights into the study of goblet cell hypersecretion in allergic rhinitis. Front. Immunol. 2025, 16, 1525928. [Google Scholar] [CrossRef] [PubMed]
- Mokry, J.; Nosalova, G. The influence of the PDE inhibitors on cough reflex in guinea pigs. Bratisl. Lek. Listy 2011, 112, 131–135. [Google Scholar] [PubMed]
- Myou, S.; Fujimura, M.; Kurashima, K.; Tachibana, H.; Hirose, T.; Nakao, S. Effect of aerosolized administration of KF19514, a phosphodiesterase 4 inhibitor, on bronchial hyperresponsiveness and airway inflammation induced by antigen inhalation in guinea-pigs. Clin. Exp. Allergy 2000, 30, 713–718. [Google Scholar] [CrossRef]
- Kita, T.; Fujimura, M.; Myou, S.; Watanabe, K.; Waseda, Y.; Nakao, S. Effects of KF19514, a phosphodiesterase 4 and 1 Inhibitor, on bronchial inflammation and remodeling in a murine model of chronic asthma. Allergol. Int. 2009, 58, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Dakin, P.; et al. Dupilumab for chronic obstructive pulmonary disease with type 2 inflammation: A pooled analysis of two phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 2025, 13, 234–243. [Google Scholar] [CrossRef]
- Bai, W.; Liu, M.; Xiao, Q. The diverse roles of TMEM16A Ca2+-activated Cl− channels in inflammation. J. Adv. Res. 2021, 33, 53–68. [Google Scholar] [CrossRef]
- Mažerik, J.; Gondáš, E.; Dohál, M.; Smieško, L.; Jošková, M.; Fraňová, S.; Šutovská, M. Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model. J. Pharmacol. Sci. 2024, 156, 239–246. [Google Scholar] [CrossRef]
- Kuek, L.E.; McMahon, D.B.; Ma, R.Z.; Miller, Z.A.; Jolivert, J.F.; Adappa, N.D.; Palmer, J.N.; Lee, R.J. Cilia Stimulatory and Antibacterial Activities of T2R Bitter Taste Receptor Agonist Diphenhydramine: Insights into Repurposing Bitter Drugs for Nasal Infections. Pharmaceuticals 2022, 15, 452. [Google Scholar] [CrossRef] [PubMed]
- McMahon, D.B.; Kuek, L.E.; Johnson, M.E.; Johnson, P.O.; Horn, R.L.J.; Carey, R.M.; Adappa, N.D.; Palmer, J.N.; Lee, R.J. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022, 101, 102499. [Google Scholar] [CrossRef] [PubMed]
- Conaway, S., Jr.; Nayak, A.P.; Deshpande, D.A. Therapeutic potential and challenges of bitter taste receptors on lung cells. Curr. Opin. Pharmacol. 2020, 51, 43–49. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joskova, M.; Sadlonova, V.; Mokra, D.; Kocan, I.; Sutovska, M.; Kackova, K.; Franova, S. Respiratory Ciliary Beat Frequency in COPD: Balancing Oxidative Stress and Pharmacological Treatment. Antioxidants 2025, 14, 1340. https://doi.org/10.3390/antiox14111340
Joskova M, Sadlonova V, Mokra D, Kocan I, Sutovska M, Kackova K, Franova S. Respiratory Ciliary Beat Frequency in COPD: Balancing Oxidative Stress and Pharmacological Treatment. Antioxidants. 2025; 14(11):1340. https://doi.org/10.3390/antiox14111340
Chicago/Turabian StyleJoskova, Marta, Vladimira Sadlonova, Daniela Mokra, Ivan Kocan, Martina Sutovska, Karin Kackova, and Sona Franova. 2025. "Respiratory Ciliary Beat Frequency in COPD: Balancing Oxidative Stress and Pharmacological Treatment" Antioxidants 14, no. 11: 1340. https://doi.org/10.3390/antiox14111340
APA StyleJoskova, M., Sadlonova, V., Mokra, D., Kocan, I., Sutovska, M., Kackova, K., & Franova, S. (2025). Respiratory Ciliary Beat Frequency in COPD: Balancing Oxidative Stress and Pharmacological Treatment. Antioxidants, 14(11), 1340. https://doi.org/10.3390/antiox14111340

