Dietary Thymol–Carvacrol Cocrystal Supplementation Improves Growth Performance, Antioxidant Status, and Intestinal Health in Broiler Chickens
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Sampling
2.3. Determination of Growth Performance
2.4. Determination of Slaughter Performance
2.5. Serum Biochemical Parameters Measurement
2.6. Measurement of Antioxidant Parameters
2.7. Serum Diamine Oxidase (DAO) and D-Lactate Concentrations Determination
2.8. Intestinal Morphological Measurement
2.9. Determination of Digestive Enzyme Activities
2.10. Determination of Gene Expression in Liver and Small Intestine
2.11. Determination of Cecal Short-Chain Fatty Acid (SCFA) Concentrations
2.12. Cecal Microbial Composition and Diversity Analysis
2.13. Statistical Analysis
3. Results
3.1. Growth Performance and Slaughter Performance
3.2. Serum Biochemical Parameters
3.3. Serum Diamine Oxidase and D-Lactate Concentrations
3.4. Antioxidant Parameters in the Serum, Liver, and Small Intestine
3.5. Small Intestinal Morphological Measurements
3.6. Small Intestinal Digestive Enzyme Activities Measurements
3.7. Antioxidant-Related Gene Expressions in the Liver and Small Intestine
3.7.1. Gene Expressions in the Liver
3.7.2. Gene Expressions in the Small Intestine
3.8. Cecal Short-Chain Fatty Acid Concentrations
3.9. Cecal Bacterial Composition and Diversity
3.9.1. Cecal Bacterial Alpha Diversity
3.9.2. Cecal Bacterial Beta Diversity
3.9.3. Relative Abundance at the Phylum Level
3.9.4. Relative Abundance at the Genus Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ROS | Reactive oxygen species |
| EOs | Essential oils |
| BW | Body weight |
| CEO | Thymol–carvacrol cocrystals |
| ADFI | Average daily feed intake |
| ADG | Average daily gain |
| F/G | The ratio of feed to gain |
| TP | Total protein |
| TG | Triacylglycerol |
| TC | Cholesterol |
| GLU | Glucose |
| UREA | Urea nitrogen |
| HDL | High-density lipoprotein |
| LDL | Low-density lipoprotein |
| ALP | Alkaline phosphatase |
| AST | Aspartate transaminase |
| ALT | Alanine transaminase |
| SOD | Superoxide dismutase |
| CAT | Catalase |
| GSH-Px | Glutathione peroxidase |
| GSH | Glutathione |
| MDA | Malondialdehyde |
| DAO | Diamine oxidase |
| CD | Crypt depth |
| VH | Villus height |
| V/C | VH to CD ratio |
| SCFA | Short-chain fatty acid |
| PCoA | Principal Coordinate Analysis |
| SOD1 | Superoxide dismutase 1 |
| SOD2 | Superoxide dismutase 2 |
| GPX1 | Glutathione peroxidase 1 |
| Keap1 | Kelch-like ECH-associated protein 1 |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
References
- Akbarian, A.; Michiels, J.; Golian, A.; Buyse, J.; Wang, Y.; De Smet, S. Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils. Poult. Sci. 2014, 93, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Barbarestani, S.Y.; Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Toghyani, M. Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci. 2020, 233, 103958. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Zhang, Y.; Everaert, N.; Comer, L.; Huang, L.; Jiao, N.; Yuan, X.; Yang, W.; Jiang, S. Effects of Dietary Supplementation with Cocrystals of Thymol and Carvacrol on Quality, Nutrient Composition, and Oxidative Stability of Broiler Meat. Foods 2024, 13, 2899. [Google Scholar] [CrossRef]
- Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Azizi, S.; Basiratpour, A.; Zokaei, M.; Derakhshan, M. Thymol and carvacrol supplementation in poultry health and performance. Vet. Med. Sci. 2022, 8, 267–288. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Gutiérrez-Praena, D.; Jos, A.; Cameán, A.M. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem. Toxicol. 2015, 81, 9–27. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Ding, Y.; Hu, Y.; Yao, X.; He, Y.; Chen, J.; Wu, J.; Wu, S.; Zhang, H.; He, X.; Song, Z. Dietary essential oils improves the growth performance, antioxidant properties and intestinal permeability by inhibiting bacterial proliferation, and altering the gut microbiota of yellow-feather broilers. Poult. Sci. 2022, 101, 102087. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. Food Res. Int. 2012, 46, 341–353. [Google Scholar] [CrossRef]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shemchuk, O.; d’Agostino, S.; Fiore, C.; Sambri, V.; Zannoli, S.; Grepioni, F.; Braga, D. Natural antimicrobials meet a synthetic antibiotic: Carvacrol/thymol and ciprofloxacin cocrystals as a promising solid-state route to activity enhancement. Cryst. Growth Des. 2020, 20, 6796–6803. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Zhang, K.; Tian, G.; Ding, X.; Bai, S.; Zeng, Q. Effects of Thymol and Carvacrol Eutectic on Growth Performance, Serum Biochemical Parameters, and Intestinal Health in Broiler Chickens. Animals 2023, 13, 2242. [Google Scholar] [CrossRef]
- National Research Council; Subcommittee on Poultry Nutrition. Nutrient Requirements of Poultry: 1994, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Aviagen. Arbor Acres Broiler Nutrition Specification. 2022. Available online: https://aviagen.com/assets/Tech_Center/AA_Broiler/AA-BroilerNutritionSpecifications2022-EN.pdf (accessed on 30 April 2023).
- Li, Z.; Jin, X.; Wu, Q.; Long, L.; Li, Y.; Zhang, Q.; Liu, A.; Chen, X.; Geng, Z.; Zhang, C. Effects of encapsulated thymol and carvacrol mixture on growth performance, antioxidant capacity, immune function and intestinal health of broilers. Ital. J. Anim. Sci. 2022, 21, 1651–1659. [Google Scholar] [CrossRef]
- Sarsenbek, A.; Wang, T.; Zhao, J.K.; Jiang, W. Comparison of carcass yields and meat quality between Baicheng-You chickens and Arbor Acres broilers. Poult. Sci. 2013, 92, 2776–2782. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Jiang, X.; Chen, L.; Hong, L.; Zhuo, Y.; Lin, Y.; Fang, Z.; Che, L.; Feng, B.; et al. Effects of dietary supplementation with exogenous catalase on growth performance, oxidative stress, and hepatic apoptosis in weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. 2020, 98, skaa067. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, F.; Yang, W.; Jiang, S.; Li, Y. Supplementation with Exogenous Catalase from Penicillium notatum in the Diet Ameliorates Lipopolysaccharide-Induced Intestinal Oxidative Damage through Affecting Intestinal Antioxidant Capacity and Microbiota in Weaned Pigs. Microbiol. Spectr. 2021, 9, e0065421. [Google Scholar] [CrossRef]
- Liu, K.; Xu, H.; Lv, G.; Liu, B.; Lee, M.K.; Lu, C.; Lv, X.; Wu, Y. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 2015, 123, 78–85. [Google Scholar] [CrossRef]
- Zhanmu, O.; Yang, X.; Gong, H.; Li, X. Paraffin-embedding for large volume bio-tissue. Sci. Rep. 2020, 10, 12639. [Google Scholar] [CrossRef]
- Liu, Y.; Han, K.; Liu, H.; Jia, G.; Comer, L.; Wang, G.; Pan, Z.; Zhao, Y.; Jiang, S.; Jiao, N.; et al. Macleaya cordata isoquinoline alkaloids attenuate Escherichia coli lipopolysaccharide-induced intestinal epithelium injury in broiler chickens by co-regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways. Front. Immunol. 2023, 14, 1335359. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Q.L.; Huang, X.W.; Ma, Z.H.; Zheng, X.L.; Li, S.L.; Duan, H.N.; Sun, X.C.; Lin, F.F.; Zhao, L.J.; et al. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8730. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Zhang, L.; Liu, H.; Cao, M.; Lin, Y.; Xu, S.; Che, L.; Fang, Z.; Feng, B.; et al. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim. Microbiome 2024, 6, 34. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Liu, D.; Guo, Y. Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens. PLoS ONE 2017, 12, e0188634. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhou, Y.; Tan, J.; Sun, H.; Sun, D.; Mu, Y.; Peng, J.; Wei, H. Effects of different amino acid levels and a carvacrol-thymol blend on growth performance and intestinal health of weaned pigs. J. Anim. Sci. Biotechnol. 2022, 13, 22. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef]
- Alagawany, M.; El-Saadony, M.T.; Elnesr, S.S.; Farahat, M.; Attia, G.; Madkour, M.; Reda, F.M. Use of lemongrass essential oil as a feed additive in quail’s nutrition: Its effect on growth, carcass, blood biochemistry, antioxidant and immunological indices, digestive enzymes and intestinal microbiota. Poult. Sci. 2021, 100, 101172. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Hoseinifar, S.H.; Javahery, S.; Yazici, M.; Van Doan, H. Growth performance, biochemical parameters, and digestive enzymes in common carp (Cyprinus carpio) fed experimental diets supplemented with vitamin C, thyme essential oil, and quercetin. Ital. J. Anim. Sci. 2022, 21, 291–302. [Google Scholar] [CrossRef]
- Lasisi, T.J.; Raji, Y.R.; Salako, B.L. Salivary creatinine and urea analysis in patients with chronic kidney disease: A case control study. BMC Nephrol. 2016, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, E.M.; Abd-Allah, A.R.; Mansour, A.M.; El-Arabey, A.A. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J. Biochem. Mol. Toxicol. 2015, 29, 165–172. [Google Scholar]
- Saravanan, S.; Pari, L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur. J. Pharmacol. 2015, 761, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mai, Y.; Qiu, X.; Chen, X.; Li, C.; Yuan, W.; Hou, N. Effect of long-term treatment of Carvacrol on glucose metabolism in Streptozotocin-induced diabetic mice. BMC Complement. Med. Ther. 2020, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Rostamkhani, A.; Shahir, M.; Lemme, A.; Anarkooli, I.; Abdi, Z. Impact of early feeding of highly available carbohydrate source on subsequent growth performance, carcass traits, blood biochemical parameters, and intestinal morphology of broilers. J. Appl. Poult. Res. 2024, 33, 100399. [Google Scholar] [CrossRef]
- Zhao, B.C.; Wang, T.H.; Chen, J.; Qiu, B.H.; Xu, Y.R.; Li, J.L. Essential oils improve nursery pigs’ performance and appetite via modulation of intestinal health and microbiota. Anim. Nutr. 2024, 16, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.C.; Wang, T.H.; Chen, J.; Qiu, B.H.; Xu, Y.R.; Zhang, Q.; Li, J.J.; Wang, C.J.; Nie, Q.F.; Li, J.L. Effects of dietary supplementation with a carvacrol-cinnamaldehyde-thymol blend on growth performance and intestinal health of nursery pigs. Porc. Health Manag. 2023, 9, 24. [Google Scholar] [CrossRef]
- Hsu, C.L.; Schnabl, B. The gut-liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 2023, 21, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D.A. The antioxidant glutathione. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 109–141. [Google Scholar]
- He, T.; Li, X.; Wang, X.; Xu, X.; Yan, X.; Li, X.; Sun, S.; Dong, Y.; Ren, X.; Liu, X.; et al. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci. Rep. 2020, 10, 11280. [Google Scholar] [CrossRef]
- FangFang; Li, H.; Qin, T.; Li, M.; Ma, S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab. Brain Dis. 2017, 32, 385–393. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Wu, R.; Bi, L.; Zhang, C.; Chen, H.; Yang, Y. Antioral Squamous Cell Carcinoma Effects of Carvacrol via Inhibiting Inflammation, Proliferation, and Migration Related to Nrf2/Keap1 Pathway. Biomed. Res. Int. 2021, 2021, 6616547. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, Y.; Liu, J.; Liu, Y.; Xiao, S.; Yang, C.; Yang, T.; Huan, W. Effect of diets supplemented with coated plant essential oil on the growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Front. Vet. Sci. 2024, 11, 1346922. [Google Scholar] [CrossRef]
- Yang, Q.L.; Yang, L.; Qu, X.Y.; Xiao, D.F. Effects of dietary supplementation by modified palygorskite and essential oil/palygorskite complex on growth performance and intestinal flora composition of broilers with diarrhea. Poult. Sci. 2024, 103, 104379. [Google Scholar] [CrossRef]
- Muñiz Pedrogo, D.A.; Chen, J.; Hillmann, B.; Jeraldo, P.; Al-Ghalith, G.; Taneja, V.; Davis, J.M.; Knights, D.; Nelson, H.; Faubion, W.A.; et al. An Increased Abundance of Clostridiaceae Characterizes Arthritis in Inflammatory Bowel Disease and Rheumatoid Arthritis: A Cross-sectional Study. Inflamm. Bowel Dis. 2019, 25, 902–913. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, L.; Guo, F.; Huang, J.; Qiao, J.; Bi, R.; Huang, J.; Zhang, K.; Guo, Y.; Wang, Z. Dietary supplemental coated essential oils and organic acids mixture improves growth performance and gut health along with reduces Salmonella load of broiler chickens infected with Salmonella Enteritidis. J. Anim. Sci. Biotechnol. 2023, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Fan, Q.; Fouad, A.M.; Sun, Y.; Huang, S.; Wu, A.; Lin, C.; Kuang, Z.; Zhang, C.; Jiang, S. Effects of dietary oregano essential oil supplementation on growth performance, intestinal antioxidative capacity, immunity, and intestinal microbiota in yellow-feathered chickens. J. Anim. Sci. 2021, 99, skab033. [Google Scholar] [CrossRef]
- Sebastià, C.; Folch, J.M.; Ballester, M.; Estellé, J.; Passols, M.; Muñoz, M.; García-Casco, J.M.; Fernández, A.I.; Castelló, A.; Sánchez, A.; et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2024, 9, e0104923. [Google Scholar] [CrossRef]
- Melaku, M.; Su, D.; Zhao, H.; Zhong, R.; Ma, T.; Yi, B.; Chen, L.; Zhang, H. The new buffer salt-protected sodium butyrate promotes growth performance by improving intestinal histomorphology, barrier function, antioxidative capacity, and microbiota community of broilers. Biology 2024, 13, 317. [Google Scholar] [CrossRef]
- Ma, J.; Mahfuz, S.; Wang, J.; Piao, X. Effect of dietary supplementation with mixed organic acids on immune function, antioxidative characteristics, digestive enzymes activity, and intestinal health in broiler chickens. Front. Nutr. 2021, 8, 673316. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Huang, S.; Huang, Y.; Bai, X.; Zhang, R.; Lei, Y.; Wang, X. Effects of Eimeria challenge on growth performance, intestine integrity, and cecal microbial diversity and composition of yellow broilers. Poult. Sci. 2024, 103, 104470. [Google Scholar] [CrossRef]
- Huang, R.; Wu, F.; Zhou, Q.; Wei, W.; Yue, J.; Xiao, B.; Luo, Z. Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications. Microbiol. Res. 2022, 260, 127019. [Google Scholar] [CrossRef]
- Wu, H.; Xie, S.; Miao, J.; Li, Y.; Wang, Z.; Wang, M.; Yu, Q. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 2020, 11, 997–1014. [Google Scholar] [CrossRef]
- Song, B.; He, J.; Pan, X.; Kong, L.; Xiao, C.; Keerqin, C.; Song, Z. Dietary Macleaya cordata extract supplementation improves the growth performance and gut health of broiler chickens with necrotic enteritis. J. Anim. Sci. Biotechnol. 2023, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhang, L.; Li, H.; Xia, F.; Bai, H.; Piao, X.; Sun, Z.; Cui, H.; Shi, L. Dietary Oregano Essential Oil Supplementation Influences Production Performance and Gut Microbiota in Late-Phase Laying Hens Fed Wheat-Based Diets. Animals 2022, 12, 3007. [Google Scholar] [CrossRef]
- Tiihonen, K.; Kettunen, H.; Bento, M.H.L.; Saarinen, M.; Lahtinen, S.; Ouwehand, A.C.; Schulze, H.; Rautonen, N. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 2010, 51, 381–392. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Lei, Y.; Zhang, R.; Shi, J.; Cheng, Q.; Ma, Y.; Ran, T.; Lei, Z. Dietary oregano essential oil supplementation improves intestinal barrier function and modulates the cecal microbiota and metabolites of beef cattle. Chem. Biol. Technol. Agric. 2025, 12, 136. [Google Scholar] [CrossRef]
- Guo, C.; Shi, X.; Luo, B.; Yang, Y.; Huang, J.; Xu, J.; Zheng, R.; Jiang, S.; Chai, J. Isovaleric acid ameliorates chronic restraint stress and resists inflammation by inhibiting NF-κB activation in mice. J. Nutr. Biochem. 2025, 144, 109955. [Google Scholar] [CrossRef] [PubMed]







| Items | Treatment 1 | SEM | p-Value 2 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| BW, g | ||||||||
| Day 0 | 44.93 | 45.04 | 45.00 | 45.10 | 0.03 | 0.201 | 0.067 | 0.189 |
| Day 21 | 938.50 c | 945.50 b | 948.00 a | 944.00 b | 0.70 | <0.001 | 0.001 | <0.001 |
| Day 42 | 2596.13 b | 2616.75 ab | 2637.50 a | 2620.88 ab | 4.09 | 0.002 | 0.007 | <0.001 |
| ADG, g | ||||||||
| Day 0–21 | 42.55 c | 42.88 b | 43.00 a | 42.81 b | 0.03 | <0.001 | 0.001 | <0.001 |
| Day 22–42 | 78.93 b | 79.58 ab | 80.45 a | 79.85 ab | 0.18 | 0.016 | 0.020 | 0.011 |
| Day 0–42 | 60.74 c | 61.23 b | 61.73 a | 61.33 ab | 0.09 | <0.001 | 0.002 | <0.001 |
| ADFI, g | ||||||||
| Day 0–21 | 50.76 b | 50.76 b | 50.83 b | 51.48 a | 0.06 | <0.001 | <0.001 | <0.001 |
| Day 22–42 | 130.74 | 131.08 | 131.15 | 131.74 | 0.17 | 0.207 | 0.039 | 0.115 |
| Day 0–42 | 90.81 b | 90.92 ab | 90.99 ab | 91.43 a | 0.09 | 0.048 | 0.010 | 0.022 |
| F/G | ||||||||
| Day 0–21 | 1.20 a | 1.18 b | 1.18 b | 1.19 a | 0.002 | <0.001 | 0.589 | <0.001 |
| Day 22–42 | 1.66 a | 1.65 ab | 1.63 b | 1.65 ab | 0.003 | 0.009 | 0.119 | 0.010 |
| Day 0–42 | 1.50 a | 1.48 ab | 1.47 b | 1.49 a | 0.002 | <0.001 | 0.265 | <0.001 |
| Survival rate, % | 95.83 c | 97.60 ab | 98.36 a | 96.62 bc | 0.13 | 0.005 | 0.316 | 0.010 |
| Dressing percentage | 90.93 b | 91.34 ab | 91.92 a | 91.38 ab | 0.12 | 0.018 | 0.067 | 0.017 |
| Items | Treatment 1 | SEM | p-Value 2 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| TP, mol/L | 37.18 b | 38.20 b | 44.78 a | 37.77 b | 0.98 | 0.009 | 0.351 | 0.070 |
| TG, mmol/L | 0.52 a | 0.48 ab | 0.44 b | 0.49 ab | 0.01 | 0.049 | 0.143 | 0.031 |
| TC, mmol/L | 2.97 | 2.97 | 2.87 | 2.83 | 0.07 | 0.866 | 0.409 | 0.710 |
| GLU, mmol/L | 12.30 b | 12.83 ab | 13.73 a | 12.98 ab | 0.18 | 0.031 | 0.067 | 0.032 |
| UREA, mg/mL | 1.72 a | 1.63 ab | 1.51 b | 1.55 ab | 0.14 | 0.031 | 0.010 | 0.015 |
| HDL, mmol/L | 1.64 | 1.90 | 2.06 | 1.89 | 0.07 | 0.158 | 0.131 | 0.077 |
| LDL, mmol/L | 0.56 | 0.53 | 0.52 | 0.56 | 0.02 | 0.715 | 0.977 | 0.501 |
| ALT, U/L | 14.28 a | 9.80 b | 7.00 c | 8.17 bc | 0.64 | <0.001 | <0.001 | <0.001 |
| AST, U/L | 298.03 a | 265.82 ab | 255.53 b | 262.19 b | 5.42 | 0.016 | 0.011 | 0.005 |
| ALP, U/L | 3570.20 | 2981.60 | 2817.10 | 3101.70 | 127.26 | 0.184 | 0.173 | 0.083 |
| Items | Treatment 1 | SEM | p-Value 2 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| DAO, U/mL | 9.25 a | 7.97 a | 5.83 b | 8.07 a | 0.31 | <0.001 | 0.003 | <0.001 |
| D-lactate, μg/L | 487.66 a | 483.63 a | 384.63 b | 395.61 b | 10.74 | <0.001 | <0.001 | <0.001 |
| Items | Treatment 1 | SEM | p-Value 2 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| Serum | ||||||||
| SOD, U/mL | 24.27 c | 34.23 b | 42.74 a | 35.51 b | 1.65 | <0.001 | <0.001 | <0.001 |
| CAT, U/mL | 23.70 b | 34.15 ab | 41.45 a | 39.31 a | 2.25 | 0.014 | 0.004 | 0.005 |
| GSH-Px, U/mL | 507.03 b | 593.02 ab | 665.24 a | 607.92 ab | 17.51 | 0.006 | 0.013 | 0.003 |
| GSH, μmol/L | 8.61 b | 9.73 ab | 10.80 a | 9.97 ab | 0.27 | 0.024 | 0.028 | 0.012 |
| MDA, nmol/mL | 4.44 a | 3.31 b | 2.80 b | 3.06 b | 0.16 | <0.001 | <0.001 | <0.001 |
| Liver | ||||||||
| SOD, U/mg prot | 30.10 b | 30.65 b | 32.15 a | 30.72 b | 0.18 | <0.001 | 0.030 | <0.001 |
| CAT, U/mg prot | 8.10 b | 9.96 b | 15.05 a | 11.67 ab | 0.79 | 0.007 | 0.023 | 0.014 |
| GSH-Px, U/mg prot | 18.54 | 20.64 | 20.63 | 19.90 | 1.61 | 0.969 | 0.785 | 0.789 |
| GSH, μmol/g prot | 11.64 b | 14.25 ab | 19.45 a | 13.65 ab | 1.02 | 0.032 | 0.224 | 0.047 |
| MDA, nmol/mg prot | 1.11 a | 0.95 ab | 0.84 b | 0.93 ab | 0.03 | 0.012 | 0.018 | 0.005 |
| Small intestine | ||||||||
| SOD, U/mg prot | 52.85 c | 58.46 bc | 71.03 a | 67.34 ab | 1.85 | <0.001 | <0.001 | <0.001 |
| CAT, U/mg prot | 17.80 b | 22.00 ab | 30.75 a | 23.63 ab | 1.52 | 0.013 | 0.052 | 0.020 |
| GSH-Px, U/mg prot | 368.61 | 400.11 | 392.96 | 381.01 | 18.92 | 0.948 | 0.864 | 0.847 |
| GSH, μmol/g prot | 90.91 b | 97.70 b | 142.14 a | 112.05 ab | 6.55 | 0.017 | 0.064 | 0.062 |
| MDA, nmol/mg prot | 2.06 a | 1.47 ab | 1.01 b | 1.40 ab | 0.11 | 0.005 | 0.014 | 0.002 |
| Items, U/gprot | Treatment 1 | SEM | p-Value 2 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| Trypsin | 204.42 b | 225.38 ab | 245.73 a | 224.71 ab | 4.02 | <0.001 | 0.020 | <0.001 |
| Lipase | 43.61 | 46.88 | 49.28 | 49.17 | 0.99 | 0.135 | 0.027 | 0.059 |
| Amylase | 242.73 b | 257.43 ab | 267.91 a | 253.32 ab | 3.31 | 0.046 | 0.157 | 0.023 |
| Items, ug/g | Treatment 1 | SEM | p-Value 3 | |||||
|---|---|---|---|---|---|---|---|---|
| Control | CEO40 | CEO60 | CEO80 | Trt | Lin | Quad | ||
| Acetic acid | 145.25 b | 161.82 ab | 187.73 a | 153.35 ab | 5.85 | 0.046 | 0.349 | 0.052 |
| Propionic acid | 34.97 b | 39.54 b | 51.44 a | 40.46 b | 1.65 | <0.001 | 0.052 | 0.004 |
| Isobutyric acid | 9.73 | 12.30 | 11.20 | 9.69 | 0.65 | 0.441 | 0.841 | 0.297 |
| Butyric acid | 42.21 b | 63.16 a | 77.59 a | 66.00 a | 3.54 | <0.001 | 0.004 | <0.001 |
| Valeric acid | 5.51 | 5.69 | 7.68 | 6.01 | 0.55 | 0.511 | 0.491 | 0.567 |
| Isovaleric acid | 4.39 b | 5.62 ab | 8.00 a | 4.53 ab | 0.512 | 0.036 | 0.555 | 0.055 |
| Caproate acid | 0.11 | 0.16 | 0.11 | 0.12 | 0.01 | 0.285 | 0.929 | 0.616 |
| Total SCFAs 2 | 242.16 b | 288.29 b | 343.75 a | 280.16 b | 9.45 | <0.001 | 0.349 | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Li, C.; Jiang, S.; Fu, Y.; Zhou, G.; Gao, Y.; Yang, W.; Li, Y. Dietary Thymol–Carvacrol Cocrystal Supplementation Improves Growth Performance, Antioxidant Status, and Intestinal Health in Broiler Chickens. Antioxidants 2025, 14, 1323. https://doi.org/10.3390/antiox14111323
Yang J, Li C, Jiang S, Fu Y, Zhou G, Gao Y, Yang W, Li Y. Dietary Thymol–Carvacrol Cocrystal Supplementation Improves Growth Performance, Antioxidant Status, and Intestinal Health in Broiler Chickens. Antioxidants. 2025; 14(11):1323. https://doi.org/10.3390/antiox14111323
Chicago/Turabian StyleYang, Jingzhe, Changjin Li, Shuzhen Jiang, Yuemeng Fu, Guohui Zhou, Yufei Gao, Weiren Yang, and Yang Li. 2025. "Dietary Thymol–Carvacrol Cocrystal Supplementation Improves Growth Performance, Antioxidant Status, and Intestinal Health in Broiler Chickens" Antioxidants 14, no. 11: 1323. https://doi.org/10.3390/antiox14111323
APA StyleYang, J., Li, C., Jiang, S., Fu, Y., Zhou, G., Gao, Y., Yang, W., & Li, Y. (2025). Dietary Thymol–Carvacrol Cocrystal Supplementation Improves Growth Performance, Antioxidant Status, and Intestinal Health in Broiler Chickens. Antioxidants, 14(11), 1323. https://doi.org/10.3390/antiox14111323

