Vitamin C Alleviates Heat-Stress-Induced Damages in Pig Thoracic Vertebral Chondrocytes via the Ubiquitin-Mediated Proteolysis Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Culture of Primary Pig Thoracic Vertebral Chondrocytes
2.2. Detection of Intracellular Reactive Oxygen Species
2.3. Biochemical Analysis
2.4. Cell Counting Kit-8 Assay
2.5. 5-Ethynyl-2′-deoxyuridine Assay
2.6. Cell Apoptosis
2.7. Cell Cycle Assay
2.8. Western Blot Analysis
2.9. Transcriptome Analysis
2.10. Quantitative Real-Time PCR
2.11. Statistical Analysis
3. Results
3.1. Heat Stress Causes Oxidative Stress and Apoptosis of Pig Thoracic Vertebral Chondrocytes
3.2. Vitamin C Relieves Heat-Stress-Induced Oxidative Stress and Apoptosis in Pig Thoracic Vertebral Chondrocytes
3.3. Regulatory Pathways in Transcriptome Analysis
3.4. The Ubiquitin-Mediated Proteolysis Signaling Pathway in Weighted Gene Co-Expression Network Analysis
3.5. Verification of Genes and Proteins in the Ubiquitin-Mediated Proteolysis Signaling Pathway
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Niu, K.; Zhong, J.; Hu, X. Impacts of climate change-induced heat stress on pig productivity in China. Sci. Total Environ. 2024, 908, 168215. [Google Scholar] [CrossRef] [PubMed]
- Estrada, K.D.; Retting, K.N.; Chin, A.M.; Lyons, K.M. Smad6 is essential to limit BMP signaling during cartilage development. J. Bone Miner. Res. 2011, 26, 2498–2510. [Google Scholar] [CrossRef] [PubMed]
- Serrat, M.A.; King, D.; Lovejoy, C.O. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19348–19353. [Google Scholar] [CrossRef]
- Mandl, J.; Szarka, A.; Bánhegyi, G. Vitamin C: Update on physiology and pharmacology. Br. J. Pharmacol. 2009, 157, 1097–1110. [Google Scholar] [CrossRef]
- Pogge, D.J.; Lonergan, S.M.; Hansen, S.L. Influence of supplementing vitamin C to yearling steers fed a high sulfur diet during the finishing period on meat color, tenderness and protein degradation, and fatty acid profile of the longissimus muscle. Meat Sci. 2014, 97, 419–427. [Google Scholar] [CrossRef]
- Cobley, J.N.; McHardy, H.; Morton, J.P.; Nikolaidis, M.G.; Close, G.L. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radic. Biol. Med. 2015, 84, 65–76. [Google Scholar] [CrossRef]
- Ferreira, I.B.; Matos Junior, J.B.; Sgavioli, S.; Vicentini, T.I.; Morita, V.S.; Boleli, I.C. Vitamin C prevents the effects of high rearing temperatures on the quality of broiler thigh meat1. Poult. Sci. 2015, 94, 841–851. [Google Scholar] [CrossRef]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000, 22, 442–451. [Google Scholar] [CrossRef]
- Damgaard, R.B. The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021, 28, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, F.; Muiños, F.; López-Arribillaga, E.; Lopez-Bigas, N.; Gonzalez-Perez, A. Systematic analysis of alterations in the ubiquitin proteolysis system reveals its contribution to driver mutations in cancer. Nat. Cancer 2020, 1, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, L.; Wang, Y.; Ji, J.; Li, J.; Wang, Z.; Li, C.; Zhang, Y.; Zhang, Z.-R. RNF126-Mediated Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. Mol. Cell 2020, 79, 320–331.e9. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Gao, C.-q.; Zhao, Y.-l.; Li, H.-c.; Sui, W.-g.; Yan, H.-c.; Wang, X.-q. Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. J. Zhejiang Univ. Sci. B 2015, 16, 549–559. [Google Scholar] [CrossRef]
- Hojo, T.; Fujioka, M.; Otsuka, G.; Inoue, S.; Kim, U.; Kubo, T. Effect of heat stimulation on viability and proteoglycan metabolism of cultured chondrocytes: Preliminary report. J. Orthop. Sci. 2003, 8, 396–399. [Google Scholar] [CrossRef]
- Ito, A.; Aoyama, T.; Iijima, H.; Nagai, M.; Yamaguchi, S.; Tajino, J.; Zhang, X.; Akiyama, H.; Kuroki, H. Optimum temperature for extracellular matrix production by articular chondrocytes. Int. J. Hyperth. 2014, 30, 96–101. [Google Scholar] [CrossRef]
- Deng, C.-C.; Zhang, J.-P.; Huo, Y.-N.; Xue, H.-Y.; Wang, W.; Zhang, J.-J.; Wang, X.-Z. Melatonin alleviates the heat stress-induced impairment of Sertoli cells by reprogramming glucose metabolism. J. Pineal Res. 2022, 73, e12819. [Google Scholar] [CrossRef]
- Yalçin, S.; Molayoglu, H.B.; Baka, M.; Genin, O.; Pines, M. Effect of temperature during the incubation period on tibial growth plate chondrocyte differentiation and the incidence of tibial dyschondroplasia. Poult. Sci. 2007, 86, 1772–1783. [Google Scholar] [CrossRef]
- Weaver, M.E.; Ingram, D.L. Morphological Changes in Swine Associated with Environmental Temperature. Ecology 1969, 50, 710–713. [Google Scholar] [CrossRef]
- Temu, T.M.; Wu, K.-Y.; Gruppuso, P.A.; Phornphutkul, C. The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E325–E334. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Tang, S.; Sun, J.; Zhang, X.; Xu, J.; Di, L.; Li, Z.; Hu, Y.; Bao, E. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress. Cell Stress Chaperones 2018, 23, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Burchfield, J.G.; Yang, P.; Humphrey, S.J.; Yang, G.; Francis, D.; Yasmin, S.; Shin, S.-Y.; Norris, D.M.; Kearney, A.L.; et al. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nat. Commun. 2019, 10, 5486. [Google Scholar] [CrossRef]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Luo, M.; Zhu, W.; Liang, Z.; Feng, B.; Xie, X.; Li, Y.; Liu, Y.; Shi, X.; Fu, J.; Miao, L.; et al. High-temperature stress response: Insights into the molecular regulation of American shad (Alosa sapidissima) using a multi-omics approach. Sci. Total Environ. 2024, 916, 170329. [Google Scholar] [CrossRef]
- Zhou, J.-Y.; Huang, D.-G.; Zhu, M.; Gao, C.-q.; Yan, H.-c.; Li, X.-G.; Wang, X.-q. Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. J. Cell. Physiol. 2020, 235, 5613–5627. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Yao, X.; Wang, G.; Huang, S.; Chen, P.; Tang, M.; Cai, J.; Wu, Z.; Zhang, Y.; et al. Mammalian IRE1α dynamically and functionally coalesces with stress granules. Nat. Cell Biol. 2024, 26, 917–931. [Google Scholar] [CrossRef]
- Nagano, M.; Shimamura, H.; Toshima, J.Y.; Toshima, J. Requirement of Rab5 GTPase during heat stress-induced endocytosis in yeast. J. Biol. Chem. 2024, 300, 107553. [Google Scholar] [CrossRef]
- Desterro, J.M.; Rodriguez, M.S.; Kemp, G.D.; Hay, R.T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 1999, 274, 10618–10624. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, W.; Tao, Q.; Li, S.; Wu, Z.; Zhou, Y.; Xu, Q.; Shu, Y.; Xu, Y.; Shao, M.; et al. Increased Small Ubiquitin-like Modifier-Activating Enzyme SAE1 Promotes Hepatocellular Carcinoma by Enhancing mTOR SUMOylation. Lab. Investig. 2023, 103, 100011. [Google Scholar] [CrossRef] [PubMed]
- Simchi, L.; Panov, J.; Morsy, O.; Feuermann, Y.; Kaphzan, H. Novel Insights into the Role of UBE3A in Regulating Apoptosis and Proliferation. J. Clin. Med. 2020, 9, 1573. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Luo, Y.; Xue, M.; Chan, S.; Wang, Y.; Yang, L.; Zhang, L.; Xie, Y.; Fang, M. Vitamin C Alleviates Heat-Stress-Induced Damages in Pig Thoracic Vertebral Chondrocytes via the Ubiquitin-Mediated Proteolysis Pathway. Antioxidants 2024, 13, 1341. https://doi.org/10.3390/antiox13111341
Yang X, Luo Y, Xue M, Chan S, Wang Y, Yang L, Zhang L, Xie Y, Fang M. Vitamin C Alleviates Heat-Stress-Induced Damages in Pig Thoracic Vertebral Chondrocytes via the Ubiquitin-Mediated Proteolysis Pathway. Antioxidants. 2024; 13(11):1341. https://doi.org/10.3390/antiox13111341
Chicago/Turabian StyleYang, Xiaoyang, Yabiao Luo, Mingming Xue, Shuheng Chan, Yubei Wang, Lixian Yang, Longmiao Zhang, Yuxuan Xie, and Meiying Fang. 2024. "Vitamin C Alleviates Heat-Stress-Induced Damages in Pig Thoracic Vertebral Chondrocytes via the Ubiquitin-Mediated Proteolysis Pathway" Antioxidants 13, no. 11: 1341. https://doi.org/10.3390/antiox13111341
APA StyleYang, X., Luo, Y., Xue, M., Chan, S., Wang, Y., Yang, L., Zhang, L., Xie, Y., & Fang, M. (2024). Vitamin C Alleviates Heat-Stress-Induced Damages in Pig Thoracic Vertebral Chondrocytes via the Ubiquitin-Mediated Proteolysis Pathway. Antioxidants, 13(11), 1341. https://doi.org/10.3390/antiox13111341