Household Processing Methods and Their Impact on Bioactive Compounds and Antioxidant Activities of Sweetpotato Genotypes of Varying Storage Root Flesh Colours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Preparation
2.2. Cooking Methods
2.3. Preparation of Sample Extract
2.4. Assay of Bioactive Compounds and Antioxidant Activities
2.5. Statistical Analysis and Data Presentation
3. Results and Discussion
3.1. Bioactive Compound Content as Influenced by Genotype and Cooking Method
3.1.1. Total Phenolic Compounds and Total Flavonoid Content
3.1.2. Total Carotenoid Content
3.1.3. Total Monomeric Anthocyanin Content
3.1.4. Vitamin C Content
3.1.5. Total Alkaloid, Saponin, and Tannin Contents
3.2. Bioactive Compound Content as Influenced by Peeling
3.3. Variations in Antioxidant Activities
3.4. Correlations between the Bioactive Compounds and Antioxidant Activities
3.5. Interrelationships among the Bioactive Compounds and Antioxidant Activities with PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Albuquerque, T.M.R.; Sampaio, K.B.; de Souza, E.L. Sweet Potato Roots: Unrevealing an Old Food as a Source of Health Promoting Bioactive Compounds—A Review. Trends Food Sci. Technol. 2019, 85, 277–286. [Google Scholar] [CrossRef]
- Mohanraj, R.; Sivasankar, S. Sweet Potato (Ipomoea batatas [L.] Lam)—A Valuable Medicinal Food: A Review. J. Med. Food 2014, 17, 733–741. [Google Scholar] [CrossRef]
- WHO. Noncommunicable Diseases—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 12 April 2021).
- Bigna, J.J.; Noubiap, J.J. The Rising Burden of Non-Communicable Diseases in Sub-Saharan Africa. Lancet Glob. Health 2019, 7, e1295–e1296. [Google Scholar] [CrossRef]
- Amagloh, F.C.; Yada, B.; Tumuhimbise, G.A.; Amagloh, F.K.; Kaaya, A.N. The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules 2021, 26, 2971. [Google Scholar] [CrossRef]
- Motsa, N.M.; Modi, A.T.; Mabhaudhi, T. Sweet Potato (Ipomoea batatas L.) as a Drought Tolerant and Food Security Crop. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Zhu, H.; Hu, C.; Liu, R.; Young, J.C.; Tsao, R. Highly Pigmented Vegetables: Anthocyanin Compositions and Their Role in Antioxidant Activities. Food Res. Int. 2012, 46, 250–259. [Google Scholar] [CrossRef]
- Visioli, F.; Alarcon-De-La-Lastra, C.; Andres-Lacueva, C.; Aviram, M.; Calhau, C.; Cassano, A.; D’Archivio, M.; Faria, A.; Favé, G.; Fogliano, V.; et al. Polyphenols and Human Health: A Prospectus. Crit. Rev. Food Sci. Nutr. 2011, 51, 524–546. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, R. Sweet Potato: Bioactive Compounds and Health Benefits. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–16. ISBN 9783319545288. [Google Scholar]
- Mwanga, R.O.M.; Mayanja, S.; Swanckaert, J.; Nakitto, M.; zum Felde, T.; Grüneberg, W.; Mudege, N.; Moyo, M.; Banda, L.; Tinyiro, S.E.; et al. Development of a Food Product Profile for Boiled and Steamed Sweetpotato in Uganda for Effective Breeding. Int. J. Food Sci. Technol. 2021, 56, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Low, J.W.; Mwanga, R.O.M.; Andrade, M.; Carey, E.; Ball, A.-M. Tackling Vitamin A Deficiency with Biofortified Sweetpotato in Sub-Saharan Africa. Glob. Food Secur. 2017, 14, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Musabyemungu, A.; Wasswa, P.; Alajo, A.; Chelagat, D.M.; Otema, M.A.; Rukundo, P.; Gibson, P.; Edema, R.; Pecota, K.V.; Yencho, G.C.; et al. Adaptability of a U.S. Purple-Fleshed Sweetpotato Breeding Population in Uganda. Aust. J. Crop Sci. 2019, 13, 17–25. [Google Scholar] [CrossRef]
- Selokela, L.M.; Laurie, S.M.; Sivakumar, D. Impact of Different Postharvest Thermal Processes on Changes in Antioxidant Constituents, Activity and Nutritional Compounds in Sweet Potato with Varying Flesh Colour. S. Afr. J. Bot. 2022, 144, 380–388. [Google Scholar] [CrossRef]
- Abong’, G.O.; Muzhingi, T.; Okoth, M.W.; Ng’ang’a, F.; Ochieng, P.E.; Mbogo, D.M.; Malavi, D.; Akhwale, M.; Ghimire, S. Processing Methods Affect Phytochemical Contents in Products Prepared from Orange-fleshed Sweetpotato Leaves and Roots. Food Sci. Nutr. 2020, 9, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Amagloh, F.C.; Kaaya, A.N.; Yada, B.; Chelangat, D.M.; Katungisa, A.; Amagloh, F.K.; Tumuhimbise, G.A. Bioactive Compounds and Antioxidant Activities in Peeled and Unpeeled Sweetpotato Roots of Different Varieties and Clones in Uganda. Futur. Foods 2022, 6, 100183. [Google Scholar] [CrossRef]
- Toydemir, G.; Gultekin Subasi, B.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodriguez, A.; Marín, F.R.; Ocaña, A.; Soler-Rivas, C. Effect of Domestic Processing on Bioactive Compounds. Phytochem. Rev. 2008, 7, 345–384. [Google Scholar] [CrossRef]
- Hong, K.H.; Koh, E. Effects of Cooking Methods on Anthocyanins and Total Phenolics in Purple-Fleshed Sweet Potato. J. Food Process. Preserv. 2016, 40, 1054–1063. [Google Scholar] [CrossRef]
- Musilova, J.; Lidikova, J.; Vollmannova, A.; Frankova, H.; Urminska, D.; Bojnanska, T.; Toth, T. Influence of Heat Treatments on the Content of Bioactive Substances and Antioxidant Properties of Sweet Potato (Ipomoea batatas L.) Tubers. J. Food Qual. 2020, 2020, 8856260. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, W.; Xu, B. Profiles of Phenolics, Carotenoids and Antioxidative Capacities of Thermal Processed White, Yellow, Orange and Purple Sweet Potatoes Grown in Guilin, China. Food Sci. Hum. Wellness 2015, 4, 123–132. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Chung, M.N.; Lee, Y.M.; Chu, S.M.; Che, J.H.; Kim, S.N.; Kim, S.Y.; Cho, Y.S.; et al. Anthocyanin Changes in the Korean Purple-Fleshed Sweet Potato, Shinzami, as Affected by Steaming and Baking. Food Chem. 2012, 130, 966–972. [Google Scholar] [CrossRef]
- Liao, M.; Zou, B.; Chen, J.; Yao, Z.; Huang, L.; Luo, Z.; Wang, Z. Effect of Domestic Cooking Methods on the Anthocyanins and Antioxidant Activity of Deeply Purple-Fleshed Sweetpotato GZ9. Heliyon 2019, 5, e01515. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Park, W.S.; Bae, J.-Y.; Kang, S.Y.; Yang, M.H.; Lee, S.; Lee, H.-S.; Kwak, S.-S.; Ahn, M.-J. Variations in the Carotenoid and Anthocyanin Contents of Korean Cultural Varieties and Home-Processed Sweet Potatoes. J. Food Compos. Anal. 2015, 41, 188–193. [Google Scholar] [CrossRef]
- Li, Y.; Schellhorn, H.E. New Developments and Novel Therapeutic Perspectives for Vitamin C. J. Nutr. 2007, 137, 2171–2184. [Google Scholar] [CrossRef]
- Donado-Pestana, C.M.; Salgado, J.M.; de Oliveira Rios, A.; dos Santos, P.R.; Jablonski, A. Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil. Plant Foods Hum. Nutr. 2012, 67, 262–270. [Google Scholar] [CrossRef]
- Bechoff, A.; Poulaert, M.; Tomlins, K.I.; Westby, A.; Menya, G.; Young, S.; Dhuique-Mayer, C. Retention and Bioaccessibility of β-Carotene in Blended Foods Containing Orange-Fleshed Sweet Potato Flour. J. Agric. Food Chem. 2011, 59, 10373–10380. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Kyalo, G.; Ssemakula, G.N.; Niringiye, C.; Yada, B.; Otema, M.A.; Namakula, J.; Alajo, A.; Kigozi, B.; Makumbi, R.N.M.; et al. ‘NASPOT 12 O’ and ‘NASPOT 13 O’ Sweetpotato. HortScience 2016, 51, 291–295. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Niringiye, C.; Alajo, A.; Kigozi, B.; Namukula, J.; Mpembe, I.; Tumwegamire, S.; Gibson, R.W.; Craig Yencho, G. “NASPOT 11”, a Sweetpotato Cultivar Bred by a Participatory Plant-Breeding Approach in Uganda. HortScience 2011, 46, 317–321. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Odongo, B.; Niringiye, C.; Alajo, A.; Kigozi, B.; Makumbi, R.; Lugwana, E.; Namukula, J.; Mpembe, I.; Kapinga, R.; et al. ‘NASPOT 7’, ‘NASPOT 8’, ‘NASPOT 9 O’, ‘NASPOT 10 O’, and ‘Dimbuka-Bukulula’ Sweetpotato. HortScience 2009, 44, 828–832. [Google Scholar] [CrossRef]
- Ooi, S.F.; Sukri, S.A.M.; Zakaria, N.N.A.; Harith, Z.T. Carotenoids, Phenolics and Antioxidant Properties of Different Sweet Potatoes (Ipomoea batatas) Varieties. IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 012077. [Google Scholar] [CrossRef]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Improving the Vanillin-Sulphuric Acid Method for Quantifying Total Saponins. Technologies 2018, 6, 84. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; pp. F1.2.1–F1.2.13. ISBN 9780471709084. [Google Scholar]
- Truong, V.D.; McFeeters, R.F.; Thompson, R.T.; Dean, L.L.; Shofran, B. Phenolic Acid Content and Composition in Leaves and Roots of Common Commercial Sweetpotato (Ipomea Batatas L.) Cultivars in the United States. J. Food Sci. 2007, 72, C343–C349. [Google Scholar] [CrossRef]
- Truong, V.-D.; Deighton, N.; Thompson, R.T.; McFeeters, R.F.; Dean, L.O.; Pecota, K.V.; Yencho, G.C. Characterization of Anthocyanins and Anthocyanidins in Purple-Fleshed Sweetpotatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 404–410. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- De Paulo Farias, D.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Antidiabetic Potential of Dietary Polyphenols: A Mechanistic Review. Food Res. Int. 2021, 145, 110383. [Google Scholar] [CrossRef]
- Narwojsz, A.; Borowska, E.J.; Polak-Śliwińska, M.; Danowska-Oziewicz, M. Effect of Different Methods of Thermal Treatment on Starch and Bioactive Compounds of Potato. Plant Foods Hum. Nutr. 2020, 75, 298–304. [Google Scholar] [CrossRef]
- Johnson, A.S.; Holliday, D.L.; Mubarak-Assad, K. Impact of Baking Time and Temperature on Nutrient Content and Sensory Quality of Sweet Potatoes. J. Culin. Sci. Technol. 2016, 14, 13–21. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Musilová, J.; Hejtmánková, K.; Kotíková, Z.; Pazderů, K.; Domkářová, J.; Pivec, V.; Cimr, J. Effect of Peeling and Three Cooking Methods on the Content of Selected Phytochemicals in Potato Tubers with Various Colour of Flesh. Food Chem. 2013, 138, 1189–1197. [Google Scholar] [CrossRef]
- Furrer, A.N.; Chegeni, M.; Ferruzzi, M.G. Impact of Potato Processing on Nutrients, Phytochemicals, and Human Health. Crit. Rev. Food Sci. Nutr. 2018, 58, 146–168. [Google Scholar] [CrossRef]
- Kumar, A.; Aswal, S.; Semwal, R.B.; Chauhan, A.; Joshi, S.K.; Semwal, D.K. Role of Plant-Derived Alkaloids against Diabetes and Diabetes-Related Complications: A Mechanism-Based Approach. Phytochem. Rev. 2019, 18, 1277–1298. [Google Scholar] [CrossRef]
- Adhikari, B. Roles of Alkaloids from Medicinal Plants in the Management of Diabetes Mellitus. J. Chem. 2021, 2021, 2691525. [Google Scholar] [CrossRef]
- Isanga, J.; Zhang, G.-N. Soybean Bioactive Components and Their Implications to Health—A Review. Food Rev. Int. 2008, 24, 252–276. [Google Scholar] [CrossRef]
- Calderón Guzmán, D.; Juárez Olguín, H.; Veloz Corona, Q.; Ortiz Herrera, M.; Osnaya Brizuela, N.; Barragán Mejía, G. Consumption of Cooked Common Beans or Saponins Could Reduce the Risk of Diabetic Complications. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3481–3486. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Crozier, A.; Clifford, M.N.; Ashihara, H. (Eds.) Plant Secondary Metabolites—Occurence, Structure and Role in the Human Diet; Blackwell Publishing Ltd.: Oxford, UK, 2006; ISBN 9780470988558. [Google Scholar]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
Cooking Method | Process |
---|---|
Boiling | Water was brought to boil in a covered saucepan. The storage roots were diced into 2.5 cm3 portions with a manual all-purpose potato cutter (Jumbo Potato Cutter, JET-L-HPG-062, Jiangsu China), placed in the boiling water at 96–97 °C, and boiled for 25 min. The ratio of roots to water used was 2:1. |
Steaming | Water was brought to boil in an electric rice cooker (Geepas-GRC 4331-3.2 L, Guangzhou, China). Diced sweetpotato storage roots (2.5 cm3 portions) were placed in a steam basket on top of boiling water, covered, and steamed at 93–95 °C for 30 min. The ratio of roots to water was 1:1. |
Baking | Diced sweetpotato storage roots (2.5 cm3 portions) were single-layered in a preheated aluminium baking pan, covered with aluminium foil, and baked in an electric oven at 180 °C for 1 h. |
Frying | Sweetpotato storage roots were sliced into approximately 1 cm thick chips with a kitchen knife. The chips were deep-fried with preheated unfortified sunflower oil at 160 °C for 8 min, using an electric deep fryer (Saachi-3 L, Shanghai, China). Chips were allowed to drain in a stainless-steel basket for 3 min after frying. |
Microwaving | The 2.5 cm3 portions of diced sweetpotato storage roots were microwaved on medium high for 15 min, using a 700 W microwave (HiSense-H20-MOMMI, Qingdao, China). |
Genotype | Cooking Method | TPC (mg GAE/g) | TFC (mg QE/g) | TCC (µg/g) | TMAC (mg/g) | VC (µg AAE/g) | TAL (µg CE/g) | TSC (mg AE/g) | TTC (mg TA/g) |
---|---|---|---|---|---|---|---|---|---|
‘Ssetyabule’ | Raw | 90.35 ± 7.03 j | 1.19 ± 0.35 q | 24.18 ± 1.91 qr | 0.86 ± 0.02 fgh | 35.65 ± 9.91 ij | 153.53 ± 28.15 a | 287.68 ± 27.37 de | 2.68 ± 1.66 lmno |
Boiling | 167.73 ± 20.24 cd | 5.86 ± 1.45 fghi | 10.43 ± 3.24 t | 0.68 ± 0.17 fgh | 11.27 ± 3.59 mno | 52.81 ± 16.08 fghij | 276.46 ± 21.16 defg | 6.75 ± 0.97 ij | |
Steaming | 173.23 ± 10.54 bc | 5.92 ± 1.43 fgh | 10.27 ± 2.76 t | 0.66 ± 0.15 fgh | 8.42 ± 2.26 o | 57.88 ± 15.04 fg | 422.68 ± 36.44 bc | 7.63 ± 1.37 fgh | |
Baking | 190.96 ± 18.23 a | 5.69 ± 1.77 ghi | 11.44 ± 1.79 t | 0.48 ± 0.11 h | 10.44 ± 3.11 no | 157.77 ± 22.05 a | 491.18 ± 21.50 a | 7.40 ± 0.92 ghi | |
Frying | 171.69 ± 16.66 bc | 6.14 ± 1.53 efgh | 13.33 ± 2.01 st | 0.46 ± 0.10 h | 13.46 ± 3.56 mno | 56.43 ± 19.41 fg | 439.96 ± 26.28 b | 6.59 ± 0.87 j | |
Microwaving | 173.21 ± 12.13 bc | 6.29 ± 2.14 efg | 10.06 ±3.04 t | 0.74 ± 0.11 fgh | 18.65 ± 6.93 lm | 60.90 ± 10.23 ef | 409.01 ± 20.24 bc | 8.08 ± 1.32 ef | |
NASPOT 11 | Raw | 90.18 ± 11.54 j | 1.07 ± 0.43 q | 35.57 ± 8.80 p | 1.24 ± 0.34 efgh | 140.05 ± 29.57 a | 54.90 ± 14.34 fg | 96.68 ± 19.40 o | 1.86 ± 0.02 pq |
Boiling | 130.12 ± 10.54 fg | 8.14 ± 1.44 c | 21.87 ± 4.79 qrs | 1.23 ± 0.31 efgh | 15.31 ± 4.58 mno | 32.38 ± 11.16 lmn | 220.51 ± 31.76 ijkl | 8.46 ± 0.44 e | |
Steaming | 121.04 ± 18.25 gh | 6.41 ± 1.93 ef | 20.29 ± 5.82 rs | 1.18 ± 0.29 efgh | 11.44 ± 2.82 mno | 40.96 ± 13.02 ijklm | 264.90 ± 22.77 defgh | 7.95 ± 1.00 efg | |
Baking | 134.59 ± 10.94 f | 5.27 ± 0.34 i | 14.27 ± 2.39 st | 0.40 ± 0.11 h | 8.33 ± 2.52 o | 58.78 ± 13.28 f | 277.62 ± 40.00 defg | 6.94 ± 0.73 ij | |
Frying | 99.71 ± 9.89 ij | 6.72 ± 1.43 de | 30.13 ± 5.67 pq | 0.56 ± 0.17 gh | 10.85 ± 2.40 mno | 44.76 ± 15.75 ghijkl | 248.35 ± 38.71 fghi | 7.06 ± 1.06 hij | |
Microwaving | 113.26 ± 10.45 h | 7.09 ± 1.36 d | 17.64 ± 3.47 rst | 1.07 ± 0.14 f gh | 26.21 ± 0.30 kl | 41.42 ± 12.17 hijklm | 292.46 ± 38.48 d | 6.61 ± 0.78 j | |
NAROSPOT 1 | Raw | 6.18 ± 1.19 mno | 0.97 ± 0.19 q | 89.57 ± 5.19 i | 2.44 ± 0.04 e | 105.70 ± 13.07 c | 35.07 ± 6.46 klm | 151.68 ± 18.75 o | 1.87 ± 0.03 pq |
Boiling | 17.17 ± 7.23 klmno | 5.74 ± 2.77 ghi | 71.17 ± 6.73 kl | 1.89 ± 0.70 ef | 43.59 ± 6.97 ghi | 22.22 ± 10.99 n | 218.68 ± 45.41 ijkl | 3.28 ± 0.71 kl | |
Steaming | 13.80 ± 3.21 klmno | 3.92 ± 1.68 j | 65.02 ± 9.11 lmn | 1.91 ± 0.55 ef | 38.67 ± 1.70 ij | 29.75 ± 7.62 mn | 169.68 ± 15.62 mno | 2.63 ± 1.24 lmno | |
Baking | 21.55 ± 3.18 k | 2.46 ± 0.26 nop | 65.18 ± 7.69 lm | 1.64 ± 0.46 efgh | 51.22 ± 3.44 g | 39.61 ± 9.92 jklm | 214.84 ± 16.71 ijkl | 2.22 ± 0.79 opq | |
Frying | 5.96 ± 1.18 no | 3.46 ± 1.23 jkl | 86.52 ± 4.47 ij | 1.85 ± 0.65 efg | 37.02 ± 4.18 ij | 31.45 ± 6.79 lmn | 161.29 ± 17.19 no | 2.73 ± 0.50 klmno | |
Microwaving | 19.23 ± 4.33 kl | 3.47 ± 1.18 jkl | 56.46 ± 5.80 n | 2.43 ± 0.06 e | 68.63 ± 4.69 f | 30.63 ± 7.77 mn | 191.79 ± 16.01 klmn | 2.91 ± 0.48 klmn | |
NASPOT 8 | Raw | 4.95 ± 0.50 o | 0.80 ± 0.26 q | 172.76 ± 5.55 e | 1.63 ± 0.36 efgh | 133.74 ± 25.85 a | 83.46 ± 13.57 cd | 198.68 ± 23.42 jklmn | 0.89 ± 0.46 r |
Boiling | 11.35 ± 5.09 klmno | 5.65 ± 1.11 hi | 118.17 ± 4.43 h | 1.33 ± 0.19 efgh | 42.22 ± 7.87 hi | 40.78 ± 7.63 ijklm | 224.68 ± 27.31 ijk | 3.16 ± 1.36 kl | |
Steaming | 9.74 ± 0.38 klmno | 2.91 ± 0.39 lmn | 131.20 ± 5.50 g | 1.30 ± 0.12 efgh | 38.19 ± 10.19 ij | 50.98 ± 18.95 fghij | 240.46 ± 24.07 ghi | 2.71 ± 0.64 klmno | |
Baking | 12.02 ± 3.59 klmno | 2.05 ± 0.86 p | 132.73 ± 6.34 g | 0.94 ± 0.16 fgh | 39.81 ± 10.24 hi | 83.48 ± 13.57 cd | 200.90 ± 31.54 jklm | 3.00 ± 1.49 klm | |
Frying | 5.67 ± 1.43 o | 2.86 ± 0.08 lmno | 152.93 ± 5.41 f | 1.02 ± 0.84 fgh | 47.75 ± 11.60 gh | 73.33 ± 13.81 de | 183.01 ± 22.71 lmno | 2.69 ± 0.67 lmno | |
Microwaving | 8.40 ± 1.15 lmno | 2.26 ± 0.60 op | 133.45 ± 5.00 g | 1.49 ± 0.34 efgh | 91.91 ± 13.88 d | 60.21 ± 6.72 ef | 226.79 ± 24.29 ijk | 2.24 ± 0.42 nopq | |
NASPOT 13 O | Raw | 5.69 ± 1.82 o | 1.09 ± 0.33 q | 269.81 ± 18.49 b | 0.99 ± 0.25 fgh | 124.76 ± 32.26 b | 80.86 ± 15.25 cd | 232.29 ± 26.52 hij | 0.98 ± 0.46 r |
Boiling | 18.45 ± 6.31 klm | 3.64 ± 0.36 jk | 203.93 ± 19.08 d | 0.89 ± 0.28 fgh | 60.51 ± 11.80 f | 48.32 ± 10.30 fghijk | 250.73 ± 31.24 efghi | 2.88 ± 0.58 klmno | |
Steaming | 18.09 ± 6.31 klmn | 3.23 ± 0.19 klm | 267.64 ± 19.32 b | 0.83 ± 0.29 fgh | 42.83 ± 12.72 hi | 54.76 ± 18.36 fgh | 249.57 ± 25.99 fghi | 3.37 ± 0.53 k | |
Baking | 18.86 ± 1.45 kl | 3.08 ± 0.70 klmn | 168.52 ± 16.20 e | 0.59 ± 0.14 gh | 36.60 ± 5.09 ij | 90.06 ± 10.72 c | 278.73 ± 25.27 def | 2.43 ± 0.40 mnop | |
Frying | 7.48 ± 2.97 lmno | 2.80 ± 0.20 mno | 304.74 ± 16.56 a | 0.55 ± 0.15 h | 40.04 ± 12.47 hi | 59.00 ± 12.18 f | 201.18 ± 25.12 jklm | 2.40 ± 0.69 mnop | |
Microwaving | 15.12 ± 4.57 klmno | 2.95 ± 0.32 lmn | 241.29 ± 18.25 c | 0.72 ± 0.22 fgh | 83.16 ± 19.76 e | 53.22 ± 17.65 fghi | 242.35 ± 37.90 fghi | 2.64 ± 0.53 lmno | |
PF-167 | Raw | 110.91 ± 16.67 hi | 1.19 ± 0.10 q | 78.70 ± 2.13 jk | 15.29 ± 2.80 b | 89.34 ± 11.42 de | 113.65 ± 23.12 b | 215.12 ± 25.95 ijkl | 1.68 ± 0.55 q |
Boiling | 158.90 ± 9.56 de | 9.21 ± 0.25 a | 64.75 ± 7.12 lmn | 17.13 ± 3.14 a | 18.17 ± 8.39 lmn | 48.32 ± 18.21 fghijk | 416.45 ± 33.47 bc | 10.95 ± 1.59 b | |
Steaming | 137.09 ± 19.46 f | 8.46 ± 1.12 bc | 57.38 ± 2.61 mn | 16.67 ± 3.05 a | 12.68 ± 3.69 mno | 55.69 ± 13.46 fg | 404.68 ± 22.92 bc | 9.72 ± 1.09 c | |
Baking | 180.89 ± 15.60 ab | 9.10 ± 0.67 ab | 47.40 ± 4.99 o | 12.23 ± 2.24 d | 14.21 ± 2.41 mno | 126.60 ± 24.37 b | 399.68 ± 45.18 c | 9.17 ± 0.92 cd | |
Frying | 154.58 ± 19.09 e | 8.40 ± 0.67 c | 69.47 ± 3.55 l | 13.92 ± 2.55 c | 17.28 ± 6.72 mn | 81.08 ± 12.61 cd | 415.29 ± 47.54 bc | 8.52 ± 0.49 de | |
Microwaving | 155.37 ± 14.90 e | 8.31 ± 1.24 c | 44.61 ± 0.85 o | 17.43 ± 3.19 a | 31.38 ± 4.35 jk | 56.21 ± 13.05 fg | 422.12 ± 32.29 bc | 12.23 ± 1.24 a | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Peel Condition | TPC (mg GAE/g) | TFC (mg QE/g) | TCC (µg/g) | TMAC (mg/g) | VC (µg AAE/g) | TAL (µg CE/g) | TSC (mg AE/g) | TTC (mg TA/g) |
---|---|---|---|---|---|---|---|---|
WP | 91.18 ± 48.70 a | 5.45 ± 2.83 a | 98.33 ± 46.15 a | 4.46 ± 3.74 a | 56.18 ± 25.24 a | 90.21 ± 54.36 a | 301.60 ± 110.22 a | 5.49 ± 3.25 a |
WTP | 62.90 ± 30.83 b | 3.65 ± 2.50 b | 85.71 ± 38.74 b | 2.58 ± 1.33 b | 33.79 ± 19.87 b | 35.41 ± 16.41 b | 244.96 ± 94.26 b | 4.25 ± 2.07 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amagloh, F.C.; Kaaya, A.N.; Tumuhimbise, G.A.; Katungisa, A.; Amagloh, F.K.; Yada, B. Household Processing Methods and Their Impact on Bioactive Compounds and Antioxidant Activities of Sweetpotato Genotypes of Varying Storage Root Flesh Colours. Antioxidants 2022, 11, 1867. https://doi.org/10.3390/antiox11101867
Amagloh FC, Kaaya AN, Tumuhimbise GA, Katungisa A, Amagloh FK, Yada B. Household Processing Methods and Their Impact on Bioactive Compounds and Antioxidant Activities of Sweetpotato Genotypes of Varying Storage Root Flesh Colours. Antioxidants. 2022; 11(10):1867. https://doi.org/10.3390/antiox11101867
Chicago/Turabian StyleAmagloh, Flora C., Archileo N. Kaaya, Gaston A. Tumuhimbise, Arnold Katungisa, Francis K. Amagloh, and Benard Yada. 2022. "Household Processing Methods and Their Impact on Bioactive Compounds and Antioxidant Activities of Sweetpotato Genotypes of Varying Storage Root Flesh Colours" Antioxidants 11, no. 10: 1867. https://doi.org/10.3390/antiox11101867